Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Физико-механические свойстваСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
ПЛАСТИЧЕСКИХ МАСС
Цель работы: изучить структуру, физико-механические свойства и применение пластмасс (термо- и реактопласты). Сравнение свойств металлов и пластмасс.
ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ
Пластические массы (пластики, пластмассы) — важные конструкционные материалы, широко применяемые в машиностроении, электро- и радиотехнике, строительстве, пищевой промышленности и других отраслях народного хозяйства и в быту. Незначительная трудоемкость изготовления пластмассовых деталей (по сравнению с металлическими), их малая себестоимость, технологичность (легко формуются, склеиваются, свариваются, обрабатываются резанием), специфические физико-механические свойства обусловливают эффективность применения и зачастую незаменимость пластмасс в машиностроении. Основными достоинствами пластмасс являются: малая плотность и возможность ее изменения, хорошие тепло-, электро- и звукоизоляционные характеристики, высокая химическая стойкость в ряде сред и неподверженность коррозии, высокие оптические свойства (бесцветность и прозрачность органических стекол), хорошие фрикционные и антифрикционные свойства, достаточно высокая прочность (прочность некоторых пластиков сопоставима с прочностью стали), хорошие декоративные свойства, бесшумность в работе (применительно к зубчатым передачам) и некоторые другие. Недостатки пластмасс - невысокая теплостойкость, низкие ударная вязкость и модуль упругости, склонность некоторых пластмасс к старению. Пластмассы - это материалы на основе природных, а чаще всего искусственных (синтетических) полимеров, которые под действием нагревания и давления способны формоваться в изделия заданной формы и затем устойчиво сохранять ее. Кроме основного компонента - связующего вещества, в состав пластмасс могут входить наполнители, пластификаторы, отвердители, красители, стабилизаторы, порообразователи, ингибиторы и некоторые другие добавки. Соотношение названных компонентов в пластмассах может быть, например, таким (массовая доля): связующее вещество - 30...60 %, наполнители - 40...65, пластификаторы - около 1, красители - 1...1,5, смазывающие вещества - 1...2 %. Связующие вещества, от которых в наибольшей степени зависят свойства пластмасс,— это природные или синтетические полимеры. Под полимерами понимают высокомолекулярные вещества, молекулы которых (макромолекулы) состоят из многочисленных элементарных звеньев (мономеров). Молекулярная масса их может составлять от 5000 до 1000000. Природные полимеры — белки и нуклеиновые кислоты, из которых построены клетки живых организмов, природные смолы (янтарь, копал, шеллак), натуральный каучук, целлюлоза, слюда, асбест, природный графит и др. Синтетические полимеры - это полиэтилен, полипропилен, полистирол, поливинилхлорид, полиамиды, поликарбонаты, фторопласты, фенопласты, полиметилметакрилат, фенолоформальдегидные смолы, эпоксидные смолы и др. В отдельных случаях пластмасса, например полиэтилен, может целиком состоять из связующего вещества — полимера. Полимеры, преимущественно синтетические, получаемые химическим синтезом простых органических веществ (мономеров) в макромолекулы методами полимеризации или поликонденсации, являются основой не только пластмасс, но и резины, химических волокон, лаков, красок, клеев и т. д. Так, полиэтилен синтезируют путем полимеризации газа — этилена, получаемого из природного газа или нефтепродуктов. Макромолекулы полимера представляют собой цепочки из звеньев мономера, атомы в которых связаны прочной химической (ковалентной) связью.
12.1. Форма строения макромолекул полимеров: а - линейная; б - разветвленная; в - сетчатая (схемы)
Различие структур макромолекул (линейные, разветвленные, сетчатые - рис. 12.1) обусловливает неодинаковость свойств полимеров. Так, линейные (полиэтилены, полиамиды и др.) и разветвленные (полиизобутилен и др.) полимеры характеризуются способностью образовывать анизотропные волокна и пленки и находиться в высокоэластичном состоянии; редкосетчатые полимеры (резины) обладают упругостью, густосетчатые (смолы) - хрупкие. По фазовому состоянию полимеры могут быть аморфными или кристаллическими. В большинстве случаев реальные полимеры содержат аморфную и кристаллическую фазы. Содержание в полимере (в процентах) веществ в кристаллическом состоянии называют степенью кристалличности. Кристаллическую структуру имеют полимеры с макромолекулами строго регулярной линейной или редкосетчатой формы. Кристаллические полимеры имеют более высокие теплостойкость и механические свойства. По полярности различают неполярные (например, полиэтилен, полипропилен, фторопласт-4) и полярные (например, поливинилхлорид) полимеры. Неполярные полимеры в отличие от полярных обладают более высокими морозостойкостью и диэлектрическими свойствами. В зависимости от поведения при нагреве различают термопластичные (термопласты) и термореактивные (реактопласты) полимеры. Соответственно называют и пластмассы на основе этих связующих веществ. Термопластичными называют полимеры или пластмассы, которые с повышением температуры размягчаются, плавятся, при формовании не претерпевают никаких химических изменений, по мере охлаждения затвердевают и сохраняют способность пластически деформироваться при повторном нагреве. Такие полимеры (полиэтилен, полистирол, капрон и др.) имеют линейную или разветвленную структуру макромолекул. Термореактивные полимеры и пластмассы при нагреве и формовании претерпевают существенные химические изменения, затвердевают и, теряя способность пластически деформироваться, остаются твердыми. Линейная структура таких полимеров при нагреве преобразуется в пространственную. Физико-механические свойства полимеров зависят как от их структуры, температуры, так и от физического состояния. Из-за высокой молекулярной массы полимеры не способны образовывать низковязкие жидкости или переходить в газообразное состояние, они могут находиться в одном из трех физических состояний - стеклообразном, высокоэластическом и вязкотекучем. Полимеры в стеклообразном состоянии характеризуются пространственной структурой макромолекул, отличаются твердостью и аморфностью. Атомы находятся в равновесном положении, и макромолекулы не перемещаются. Высокоэластическое состояние макромолекул характерно для высокополимеров и выражается в их способности к большим обратимым изменениям формы при небольших нагрузках. Атомы колеблются, а макромолекулы способны изгибаться. Макромолекулы в целом не перемещаются, но их отдельные сегменты подвижны за счет вращения групп атомов вокруг связи
в мономерных звеньях цепи. Полимеры в вязкотекучем состоянии (линейные или разветвленные) отличаются от жидких веществ большей вязкостью. При этом подвижной является вся макромолекула.
Рис. 12.2. Термомеханические кривые для полимеров: а – аморфного; б - кристаллического; в – редкосетчатого для различных состояний: I – стеклообразного; II – высокоэластичного; III – вязкотекучего; IV – химического разложения
На рис. 12.2 приведены зависимости степени деформации полимеров с различной структурой от температуры их нагрева (термомеханические кривые). По этим кривым можно судить о характере изменения механических и технологических свойств полимеров при различных температурах. Так, полимеры или пластмассы на их основе эксплуатируются при температурах ниже температуры стеклования tc, когда они находятся в твердом состоянии. Формование изделий из полимеров или пластмасс ведут в области их вязкотекучего состояния. Температура tхр (ниже tc ) соответствует переходу полимеров в хрупкое состояние (для полистирола tc = 100 °С и tхр = 90°С, для полиметилметакрилата tc = 100°С и tхр = 10°С). В кристаллизующихся полимерах при температуре tк их кристаллическая часть плавится и далее, от tк до tT, полимер находится в высокоэластичном состоянии. Свыше температур tT аморфные и кристаллизующиеся полимеры переходят в вязкотекучее состояние. Для редкосетчатых полимеров температура tх – начало химического разложения полимера.
Рис. 12.3. Зависимость удлинения от усилия при деформации кристаллического полимера Зависимость степени деформации кристаллических полимеров (полиэтилен, полиамиды, полиэтилентерефталат и др.) от напряжения выражается линией, состоящей из трех участков (рис. 12.3). Первоначально (участок I) удлинение прямо пропорционально усилию. По достижении некоторого усилия (точка А) удлинение полимера увеличивается при неизменном усилии (участок II).Это вызвано резким местным сужением образца, образованием «шейки», распространяющейся на всю его длину. Затем наблюдается растяжение тонкого, но ориентированного образца вплоть до разрыва (участок III). Деформация полимера зависит также от скорости и температуры нагружения. Недостаток полимеров, а, следовательно, и пластмасс, - склонность к старению, т. е. необратимому самопроизвольному изменению важнейших характеристик при эксплуатации и хранении. Важным компонентом пластмасс являются наполнители. Они повышают механическую прочность пластмасс, уменьшают их усадку при формовании изделий, влияют на вязкость, водостойкость пластмасс, придают им специальные свойства, (фрикционные, антифрикционные и др.). Наполнители могут быть органическими или минеральными в виде порошков, волокон, листов (сажа, древесная мука, сульфидная целлюлоза, асбест, тальк, очесы хлопка или льна, стекловолокно, бумага, ткани, древесный шпон и др.). Органические наполнители повышают прочность, снижают хрупкость, но ухудшают термо- и водостойкость пластмасс. Минеральные наполнители повышают прочность, водостойкость, химическую стойкость, тепло- и электроизоляционные свойства пластмасс, но часто повышают и их хрупкость и плотность. В зависимости от вида наполнителя различают порошковые (карболиты), волокнистые (волокниты), слоистые (содержащие листовые наполнители) и некоторые другие пластмассы. Пластификаторы способствуют повышению пластичности пластмасс или расширению температурного интервала их вязкотекучего состояния. В качестве пластификаторов широко используют органические вещества с высокой температурой кипения и низкой температурой замерзания (стеарин, дибутилфталат, олеиновую кислоту и др.). Отвердители (различные амины), или катализаторы (перекисные соединения) вводят в термореактивные пластмассы для ускорения процессов отверждения пластмасс. Красители органического или минерального происхождения придают пластмассам желаемый цвет. Стабилизаторы, например сажа, препятствуют старению полимерных материалов. Порообразователи, переходя при формовании в газообразное состояние, способствуют образованию пор в таких пластмассах, как пенополистирол, пенополивинилхлорид, поролон, пенополиуретан и др. Смазывающие вещества вводят для уменьшения прилипаемости пластмассовых изделий к металлическим частям пресс-формы. Кроме названных, в пластмассы вводятся с различными целями и другие добавки. Дадим краткую характеристику свойств и областей применения некоторых пластмасс. К термопластичным пластмассам, основой или связующим веществом в которых являются полимеры с макромолекулами линейной или разветвленной структуры, относятся неполярные: полиолефины (полиэтилен, полипропилен и полиизобутилен), полистирол, фторопласт-4; полярные: полиметилметакрилат, поливинилхлорид, полиамиды и др. Полиэтилен — кристаллизующийся полимер, который производят полимеризацией этилена (СН2=СН2). Различают полиэтилен низкой плотности, получаемый при высоком давлении (ПЭВД) и содержащий 35...65 % кристаллической фазы, а также полиэтилен высокой плотности, получаемый при низком давлении (ПЭНД) и содержащий 60...95 % кристаллической фазы. Полиэтилен химически стоек, нерастворим в воде, ацетоне, спирте, морозостоек до – 70 °С (чем выше плотность, тем выше теплостойкость и механическая прочность), но склонен к старению. Из него изготавливают несиловые детали (контейнеры, емкости, вентили, детали химических насосов, трубы для транспортирования агрессивных жидкостей), защитные покрытия на металлах, пленку для различных целей (электроизоляционная, парниковая). Полипропилен (—СН2—СНСН2—) получают полимеризацией из пропилена в присутствии металлоорганических катализаторов. Он более теплостоек (до 150°С), чем полиэтилен, но менее морозостоек (до - 10...- 20°С). Из полипропилена изготавливают некоторые конструкционные детали автомобилей, мотоциклов, корпуса насосов, трубы для транспортирования агрессивных сред, пленки, емкости. Полистирол (—СН2 — CHC6H5—) - прозрачный, аморфный полимер, диэлектрик, химически стоек, нерастворим в растворителях, но склонен к старению и имеет низкую (до 80 °С) теплостойкость. Применяется он для изготовления деталей машин и приборов (ручки, корпуса и т. д.), емкостей и сосудов для химикатов, пленки и т. д. Фторопласт-4, или политетрафторэтилен (— CF2—CF2)n, - полимер, имеющий макромолекулы в виде спиралей, диэлектрик, химически стоек. Из него изготавливают уплотнительные прокладки, трубы для транспортирования агрессивных сред, сильфоны, антикоррозионные покрытия на металлах. По химической стойкости он превосходит все известные пластмассы. Полиметилметакрилат (органическое стекло, или плексиглас) — полярный, прозрачный, аморфный полимер на основе сложных эфиров акриловой и метакриловой кислот. В отличие от минерального стекла органическое значительно легче (более чем в два раза), пропускает ультрафиолетовые лучи, технологично (хорошо обрабатывается резанием, склеивается, сваривается, полируется), но обладает меньшими твердостью, прочностью и теплостойкостью. Идет на остекление и изготовление оптики, светотехнических деталей, емкостей. На основе полиметилметакрилата изготавливают самоотверждающиеся пластмассы типа стиракрила, которые применяют в производстве штампов, литейных моделей, абразивного инструмента. Полиамиды (капрон, нейлон и др.) — полярные пластмассы на основе кристаллизующегося полимера, содержащего группы СО, NH и СН2. Они характеризуются высокими прочностью, теплостойкостью, износостойкостью и низким коэффициентом трения (f < 0,05), способностью погашать вибрации. Недостатки полиамидов — склонность к старению и некоторая гигроскопичность. Введение наполнителей (графит, тальк, дисульфид молибдена) обеспечивает повышение антифрикционных и некоторых других их свойств. Полиамиды применяют в машиностроении, электротехнике, медицине. Поливинилхлорид — полярный, аморфный полимер состава (-СН2-СНСl-). Непластифицированный поливинилхлорид называют винипластом и применяют для изготовления различных деталей химического оборудования, труб, деталей вентиляционных и теплообменных установок, муфт, элементов насосов, вентиляторов, защитных покрытий на металлах, облицовочной плитки. Пластикат (полихлорвинилхлорид с пластификатором) используют для изготовления труб, конвейерных лент, печатных валиков, линолеума и т. д. Наиболее крупнотоннажный по производству вид реактопластов — фенопласты, т. е. пластмассы, получаемые на основе фенолоформальдегидных смол. Различают следующие виды фенопластов: ненаполненные, порошковые (наполнители - древесная мука, тальк, графит и др.), волокнистые (волокниты, асбо- и стекловолокниты), слоистые (гетинакс, текстолит и др.). Волокниты. получают пропиткой очесов льна или хлопка фенолоформальдегидным связующим и применяют для изготовления деталей, работающих на изгиб и кручение и устойчивых к ударным нагрузкам (шкивы, фланцы, стойки, направляющие втулки, маховики и т. д.). Асбоволокниты получают пропиткой асбеста фенолоформальдегидной смолой. Они обладают высокими ударопрочностью, химической стойкостью, фрикционными свойствами и применяются для изготовления элементов тормозов (накладки, колодки, диски подъемно-транспортных устройств, автомобилей и т. д.), кислотоупорных конструкций. Из слоистых пластмасс значительный интерес представляет текстолит, получаемый из связующего (фенолоформальдегидная смола) и наполнителя (хлопчатобумажные ткани - шифон, миткаль, бязь и др.). Текстолит отличается прочностью, способностью поглощать шумы и гасить вибрации, однако он может работать только при невысоких температурах (до 90 °С). Из текстолита изготовляют зубчатые колеса, вкладыши подшипников, шкивы, втулки, прокладки в машиностроении, распределительные щиты и монтажные панели в электротехнике и т. д. В табл. 12.1 приведены основные физико-механические свойства некоторых названных пластмасс. Механические свойства пластмасс определяют при проведении лабораторных статических испытаний на растяжение (ГОСТ 11262—80) или сжатие, изгиб, динамических испытаний по определению ударной вязкости (ГОСТ 4647—80), путем измерения твердости (по Бринеллю ГОСТ 4670—77 с помощью твердомера ТММ-2 или по Роквеллу, Виккерсу, Шору). При назначении материалов для использования в конструкциях, узлах машин и аппаратов пищевой промышленности, тары и упаковки необходимо также учитывать и ограничения, налагаемые спецификой взаимодействия материала с пищевыми средами. Краткие сведения о взаимодействии пластмасс с технологическими и пищевыми средами, а также областях их использования, разрешенных органами Минздравоохранения и социального развития РФ, приведены в табл. 12.2 и 12.3.
Таблица 12.1 Некоторые физико-механические свойства пластмасс
Таблица 12.2 Коррозионная стойкость пластмасс в технологических и пищевых средах
Таблица 12.3 Использование полимерных материалов, разрешенных для изготовления деталей технологического оборудования, работающих в непосредственном контакте с пищевыми средами
Порядок выполнения работы 1. Ознакомиться с теоретическими сведениями и в случае необходимости, определяемой преподавателем, сдать теоретический зачет по теме. 2. Изучить коллекцию образцов пластмасс. 3. Сравнить свойства пластмасс и металлических материалов (по справочнику) 4. Сделать выводы и составить отчет по работе в соответствии с заданиями. Контрольные вопросы 1. Дайте определение пластмасс. Назовите их состав и общие свойства. Как классифицируют пластмассы по связующему и наполнителю? 2. Какова структура полимеров, их фазовое состояние? 3. Возможные виды физического состояния полимеров. 4. Каковы механические свойства полимеров и как они зависят от температуры? 5. Назовите основные термопластичные пластмассы, их состав, разновидности, свойства и применение. 6. Назовите основные термореактивные пластмассы, их состав, разновидности, свойства и применение. 7. Особенности применения пластмасс в пищевой промышленности Содержание отчета 1. Тема и цель работы. 2. Краткие ответы на контрольные вопросы. 3. Выводы.
Практическая работа № 13
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 1239; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.92.5 (0.013 с.) |