Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Деформируемые сплавы алюминия делятся на упрочняемые и не упрочняемые термической обработкой. К сплавам, не упрочняемымСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
термической обработкой относятся сплавы алюминия с марганцем (маркируется АМц ) и магнием (маркируются АМг 1, …. АМг 7). Эти сплавы имею: низкую прочность, но высокую пластичность и коррозионную стойкость. К сплавам, упрочняемым термической обработкой относятся дюралюминий, ковочные сплавы, высокопрочные сплавы алюминия. Дюралюминии (дуралюмин) представляет собой сплав алюминия с медью (до 5 %), марганцем (до 1,8 %} и магнием (до 0,9 %). Маркируется буквой Д и цифрой, показывающей порядковый номер (Д1, Д16 и др.). Подвергается термической обработке, которая состоит из закачки от температуры 500°С неестественного старения, заключающегося в выдержке при комнатной температуре в течение нескольких суток. В результате такой обработки прочность повышается в два раза (с 200…240 МПа до 450…500 МПа), а пластичность практически не меняется. Достоинством дюралюминия является высокая удельная прочность (отношение предела прочности к плотности), что особенно важно в самолетостроении, Дюралюминий выпускается в виде листов и прутков. Высокопрочные сплавы алюминия содержат кроме меди и магния дополнительно цинк (до 10 %), Эти сплавы маркируются буквой В ( В 95, В 96). Подвергаются термообработке, аналогичной термообработке дюралюминия, но естественное старение заменяется искусственным старением, заключающимся в выдержке при температуре 120…140 °С в течение 16…24ч. В результате предел прочности доходит до 600…700 МПа. Ковочные сплавы алюминия предназначены для производства деталей ковкой и штамповкой. Маркируются буквами АК и числом, показывающим порядковый номер. По химическому составу близки к дюралюминию (сплав АК 1 совпадает но составу с Д 1), иногда отличаясь более высоким содержанием кремния ( АК 6, АК 8). Подвергаются аналогичной термообработке. Малая плотность и высокая удельная прочность обусловили широкое применение алюминиевых сплавов в самолетостроении. Они составляют до 75% массы пассажирских самолетов. Из дюралюминия изготовляются обшивки, каркасы, из высокопрочных сплавов — тяжелонагруженные детали, из ковочных — кованые и штампованные детали (например, лопасти винта). 14.Пластические массы. Свойства, состав и классификация пластмасс. Пластическими массами (пластмассами) называются материалы, получаемые на основе природных или синтетических полимеров. Пластмассы являются важнейшими современными конструкционными материалами. Они обладают рядом ценных свойств: малой плотностью (до 2 г/см³), высокой удельной прочностью, низкой теплопроводностью, химической стойкостью, хорошими электроизоляционными свойствами, звукоизоляционными свойствами. Некоторые пластмассы обладают оптической прозрачностью, фрикционными и антифрикционными свойствами, стойкостью к истиранию и др. Кроме того, пластмассы имеют хорошие технологические свойства: легко формуются, прессуются, обрабатываются резанием, их можно склеивать и сваривать. Недостатками пластмасс являются низкая теплостойкость, низкая ударная вязкость, склонность к старению для ряда пластмасс. Основой пластмасс являются полимерные связующие вещества. Кроме связующих в состав пластмасс входят: наполнители для повышения прочности и придания специальных свойств; пластификаторы для повышения пластичности, что необходимо при изготовлении изделий из пластмасс; отвердители, ускоряющие переход пластмасс в неплавкое, твердое и нерастворимое состояние; стабилизаторы, предотвращающие или замедляющие процесс старения; красители. По поведению при нагреве все пластмассы делятся на термопластичные и термореактивные. Термопластичные при неоднократном нагревании и охлаждении каждый раз размягчаются и затвердевают. Термореактивные при нагревании размягчаются, затем еще до охлаждения затвердевают (вследствие протекания химических реакций) и при повторном нагревании остаются твердыми. По виду наполнителя пластмассы делятся на порошковые, волокнистые, слоистые, газонаполненные и пластмассы без наполнителя. По способу переработки в изделия пластмассы подразделяются на литьевые и прессовочные. Литьевые перерабатываются в изделия методами литьевого прессования и являются термопластичными. Прессовочные перерабатываются в изделия методами горячего прессования и являются термореактивными. По назначению пластмассы делятся на конструкционные, химически стойкие, прокладочные и уплотнительные, фрикционные и антифрикционные, теплоизоляционные и теплозащитные, электроизоляционные, оптически прозрачные, облицовочно-декоративные и отделочные. 15.Каучуки и резины. Резина представляет собой искусственный материал, получаемый в результате специальной обработки резиновой смеси, основным компонентом которой является каучук. Каучук — это полимер, отличительной особенностью которого является способность к очень большим обратимым деформациям при небольших нагрузках. Это свойство объясняется строением каучука. Его макромолекулы имеют вытянутую извилистую форму. При нагрузке происходит выпрямление макромолекул, что и объясняет большие деформации. При разгрузке макромолекулы принимают исходную форму. Различают натуральный и синтетический каучук. Натуральный каучук добывают из некоторых видов тропических растений в незначительных количествах. Поэтому производство резины основано на применении синтетических каучуков. Сырьем для производства синтетическою каучука служит спирт, на смену которому приходит нефтехимическое сырье. . Основное свойство резины — очень высокая эластичность. Резина способна к большим деформациям, которые почти полностью обратимы. Кроме того, резина характеризуется высоким сопротивлением разрыву и истиранию, газо- и водонепроницаемостью, химической стойкостью, хорошими электроизоляционными свойствами, небольшой плотностью, малой сжимаемостью, низкой теплопроводностью. По назначению резины подразделяются на резины общего и специального назначения. Из резин общего назначения изготовляются автомобильные шины, транспортерные ленты, ремни ременных передач, изоляция кабелей, рукава и шланги, уплотнительные и амортизационные детали, обувь и др. Резины общего назначения могут использоваться в горячей воде, слабых растворах щелочей и кислот, а также на воздухе при температуре от -10 до +150 °С. Резины специального назначения подразделяются на теплостойкие, которые могут работать при температуре до 250…350 °С; морозостойкие, выдерживающие температуру до -70 °С; маслобензостойкие, работающие в среде бензина, других топлив, масел и нефтепродуктов; светоозоностойкие, не разрушающиеся при работе в атмосферных условиях в течении нескольких лет, стойкие к действию сильных окислителей; электроизоляционные, применяемые для изоляции проводов и кабелей; электропроводящие, способные проводить электрический ток. 16.Лакокрасочные материалы. Лакокрасочные материалы — вязкие жидкости, которые после нанесения превращаются в твердую пленку на поверхности окрашиваемого материала. Лакокрасочные материалы (краски, грунтовки и шпатлевки) – сложные многокомпонентные системы. Они состоят из связующего вещества, пигмента, а в грунтовках и шпатлевках – наполнителя. До рабочей консистенции лакокрасочные материалы доводят растворителями или разбавителями. В лакокрасочные материалы вводят различные добавки, обеспечивающие необходимые технологические и эксплуатационные свойства: отвердители и ускорители, загустители, поверхностно-активные добавки, стабилизирующие вещества и т. п. 17.Клеи и герметики. Клеящие материалы - это жидкие, пастообразные или твердые вещества, составы и композиции. При их высыхании или отверждении в зазоре между соединяемыми поверхностями образуется клеевой слой. Прочность соединения определяют два основных его свойства: адгезия – слипание соединительного слоя со склеиваемыми поверхностями; когезия – сцепление частиц внутри клеевого слоя после его отверждения. Клеи в основном используются для соединения и фиксации в определенном положении деталей и элементов конструкций. Клеи-компаунды предназначены для заливки поврежденных мест. Клеи-шпатлевки обладают повышенной прочностью после отверждения, поэтому возникло название – “холодная сварка”. Клеи-герметики обладают свойствами и клеев, и герметиков. Герметики применяются для обеспечения непроницаемости (герметизации) стыков узлов, агрегатов и кузовных деталей. Отличие герметиков от клеев заключается не в их составе и свойствах, а в назначении. Герметики-прокладки предназначены для ремонта «штатных» или формирования взамен их новых прокладок. Герметики-фиксаторы используются для герметизации резьбовых соединений и исключения возможности самоотвинчивания. Современные клеи и герметики, как правило, состоят из полимерной основы с различными добавками: отвердители, инициаторы и катализаторы обеспечивают быстрое и полное отверждение; наполнители (органические и неорганические) улучшают свойства клеевого слоя, а также снижают величину усадки при отверждении 18.Древесные и волокнистые материалы. Древесина — это органический матерная растительного происхождения, представляющий собой сложную ткань древесных растений. Она составляет основную массу ствола деревьев. Древесина является волокнистым материалом, причем волокна в ней расположены вдоль ствола. Поэтому для нее характерна анизотропия, т.е. ее свойства вдоль и поперек волокон различны. Достоинствами древесины являются относительно высокая прочность; малая объемная масса и, следовательно, высокая удельная прочность; хорошее сопротивление ударным и вибрационным нагрузкам; малая теплопроводность и, следовательно, хорошие теплоизоляционные свойства; химическая стойкость; хорошая технологичность (легкость обработки и изготовления изделий). К недостаткам древесины следует отнести гигроскопичность, т.е. способность впитывать влагу, и возникающую из-за изменения влажности нестабильность свойств и размеров (усушка и набухание), а также отсутствие огнестойкости, неоднородность строения, склонность к гниению. Для защиты древесины от увлажнения, загнивания и воспламенения производят окраску лаками и красками, опрыскивание и пропитку специальными химическими веществами. Материалы из древесины можно разделить на лесоматериалы, сохраняющие природную физическую структуру и химический состав древесины, и древесные материалы, полученные путем специальной обработки исходной древесины. В свою очередь лесоматериалы подразделяются на необработанные (круглые), пиломатериалы, лущенные (древесный шпон) и колотые. 19.Силикатные стекла. Стеклом называется твердый аморфный термопластичный материал, получаемый переохлаждением расплава различных оксидов. В состав стекла входит стеклообразующие кислотные оксиды (SiO2, А12О3, В2О3 и др.), а также основные оксиды (К2О, СаО, Na2О и др.), придающие ему специальные свойства и окраску. Оксид кремния SiO2 является основой практически всех стекол и входит в их состав в количестве 50 … 100 %. По назначению стекла подразделяются на строительные (оконные, витринные и др.), бытовые (стеклотара, посуда, зеркала и др.) и технические (оптические, свето- и электротехнические, химико-лабораторные, приборные и др.). Важными свойствами стекла являются оптические. Обычное стекло пропускает около 90 %, отражает — 8 % и поглощает — 1 % видимого света. Механические свойства стекла характеризуются высоким сопротивлением сжатию и низким — растяжению. Термостойкость стекла определяется разностью температур которую оно может выдержать без разрушения при резком охлаждении в воде. Для большинства стекол термостойкость колеблется от 90 до 170 °С, а для кварцевого стекла, состоящего из чистого SiO2— 1000 °С. Основной недостаток стекла — высокая хрупкость. 20.Керамика. Керамика — это неорганический минеральный материал, получаемый из отформованного минерального сырья путем спекания при высоких температурах (1200…2500 °С). Структура керамики состоит из кристаллической, стекловидной (аморфной) и газовой фазы. Криcталлическая фаза является основой керамики, ее количество соcтавляет до 100 %. Она представляет собой различные химические соединения и твердые растворы. Стекловидная фаза находится в керамике в виде прослоек стекла. Ее количество составляет до 40 %. Она снижает качество керамики. Газовая фаза представляет собой газы, находящиеся в порах керамики. По назначению керамика может быть разделена на строительную, бытовую и художественно-декоративную, техническую. Строительная (например, кирпич) и бытовая (например, посуда) чаще всего имеет в структуре газонаполненные поры и изготовляется из глины. Техническая керамика имеет почти однофазную кристаллическую структуру и изготовляется из чистых оксидов (реже карбидов, боридов или нитридов). Основные оксиды, используемые для производства керамики — А12О3, ZnО2, МgО, СаО, ВеО. Техническая керамика используется в качестве огнеупорного, конструкционного и инструментального материала. Она обладает высокой прочностью при сжатии и низкой при растяжении. Главный недостаток керамики, как и стекла — высокая хрупкость. 21.Композиционные и порошковые материалы Композиционными называют сложные материалы в состав которых входят отличающиеся но свойствам нерастворимые друг в друге компоненты. Основой композиционных материалов является сравнительно пластичный материал, называемый матрицей. В матрице равномерно распределены более твердые и прочные вещества, называемые упрочнителями или наполнителями. Матрица может быть металлической, полимерной, углеродной, керамической. По типу упрочнителя композиционные материалы делятся на дисперсноупрочнённые, в которых упрочнителем служат дисперсные частицы оксидов, карбидов, нитридов и др., волокнистые, в которых упрочнителем являются волокна различной формы и слоистые, состоящие из чередующихся слоев волокон и листов матричного материала. Среди дисперсноупрочненных материалов ведущее место занимает САП (спеченная алюминиевая пудра), представляющий собой алюминий, упрочненный дисперсными частицами оксида алюминия. Получают САП из окисленной с поверхности алюминиевой пудры путем последовательного брикетирования, спекания и прессования. Структура САП состоит из алюминиевой основы с равномерно распределенными частицами А12О3. С увеличением содержания А12О3 повышается прочность, твердость, жаропрочность САП, но снижается его пластичность. Марки САП-1, САП-2, САП-3, САП-4 содержат, соответственно, 6…8, 9…12, 13…17, 18…22 % А12О3. Высокая прочность САП объясняется большой дисперсностью упрочнителя и малым расстоянием между его частицами. По жаропрочности САП превосходит все алюминиевые сплавы. Горюче-смазочные материалы Го рюче-смазочные материалы (ГСМ) — к ним относятся различные виды горючего и смазки, в основном в применении к автотранспорту, то есть минеральные масла, бензин и дизельное топливо. Часто используется просто как синоним слова бензин. Моторное топливо жидкое или газообразное горючее, используемое в двигателях внутреннего сгорания (поршневых, реактивных, газотурбинных). Моторное топливо подразделяют на группы: карбюраторное, в том числе авиационные и автомобильные бензины, тракторный керосин, дизельное топливо; топливо для двигателей различного назначения. Моторное топливо получают из нефти и углеводородных газов, это один из основных продуктов нефтепереработки, составляющий примерно 63% всех потребляемых нефтепродуктов. Обычно моторное топливо представляет собой смеси нескольких компонентов, в том числе основного (базового) топлива и присадок (антидетонаторов, антиокислителей, ингибиторов коррозии и др.). Для базового топлива используют продукты прямой перегонки нефти (бензины, лигроины, керосиногазойлевые и более тяжёлые фракции) и вторичных процессов переработки нефти (каталитического крекинга, риформинга и др.). Компонентами могут быть изооктан, изопентан, алкилбензолы, газовый бензин и др. Высокооктановые топливо автомобильные и авиационные бензины, применяемые в карбюраторных двигателях внутреннего сгорания, работающих при высокой степени сжатия и с наддувом. Высокооктановые топлива стойки к детонации и обеспечивают плавную работу двигателя без нарушения процесса сгорания. Детонационная стойкость высокооктановых топлив — важнейшая характеристика топлив — обусловлена высоким содержанием в них изопарафиновых углеводородов, бензола и его гомологов, олефинов и низших циклопарафинов; для авиационных бензинов детонационная стойкость характеризуется октановым числом и сортностью бензинов, для автомобильных бензинов — октановым числом. Газотурбинное топливо углеводородные газы или жидкое нефтяное топливо, используемые в газовых турбинах. Газообразное газотурбинное топливо (природные газы) применяют главным образом в газотурбинных установках, работающих на станциях перекачки газов магистральных газопроводов; жидкое газотурбинное топливо — в транспортных (автомобильных, тепловозных, судовых) и крупных стационарных газовых турбинах. К нефтяным газотурбинным топливам относятся дистилляты, получаемые при перегонке нефти, переработке продуктов крекинга, дистилляты замедленного коксования мазутов и др. продукты вторичной переработки нефти. Дизельное топливо жидкое нефтяное топливо, применяемое в дизелях. Выпускаются две группы дизельного топлива: 1) дистиллятные маловязкие, применяемые в быстроходных форсированных двигателях; 2) высоковязкие остаточные, используемые в тихоходных дизелях. Для производства дистиллятных дизельных топлив используют керосино-газойлевые фракции прямой перегонки нефти и частично (до 20%) газойли каталитического крекинга. Топлива для тихоходных дизелей вырабатывают из смеси мазутов с керосино-газойлевыми фракциями нефти. Реактивное топливо топливо для авиационных реактивных двигателей. В качестве реактивного топлива наибольшее применение нашли керосиновые фракции, получаемые прямой перегонкой из малосернистых и сернистых нефтей. Для производства топлив, обладающих повышенной термической стабильностью, фракции прямой перегонки подвергают гидроочистке. В производстве реактивного топлива используются также компоненты гидрокрекинга и демеркаптанизации. Бензин продукт перегонки нефти; смесь легких углеводородов с температурой кипения от 30 до 205°С. Бензин применяется как топливо для карбюраторных двигателей и как растворитель. Керосин фракция нефти, выкипающая в основном в интервале температур 200-300°С; применяется для бытовых целей как печное и моторное топливо. Также керосиновые фракции нефти широко используются в качестве реактивного топлива. Мазут остаток после отгона от нефти бензина, лигроина, керосина и фракций дизельного топлива. В зависимости от химического состава и свойств мазут может быть использован как жидкое котельное топливо, для получения дистиллятных и остаточных смазочных масел, для крекинга или гидрирования с целью получения моторного топлива (бензина, дизельного топлива), для производства битумов, кокса и других целей.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 606; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.185.194 (0.011 с.) |