Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Определение коэффициента упругости (жесткости) пружины

Поиск
Цель:   экспериментальная проверка закона Гука, исследование упругих систем, образованных параллельным и последовательным соединением пружин.
Оборудование: набор пружин, штатив, набор грузов, линейка.

Груз, подвешенный на пружине, вызывает ее деформацию. Если пружина способна восстановить первоначальную форму, то ее деформация называется упругой.

При упругих деформациях выполняется закон Гука:

,

где Fупр ¾ сила упругости; k ¾ коэффициент упругости (жесткость); D l - удлинение пружины.

Примечание: знак “-” определяет направление силы упругости.

Если груз находится в равновесии, то сила упругости численно равна силе тяжести: k D l = m g, тогда можно найти коэффициент упругости пружины:

, (1)

где m ¾ масса груза; g ¾ ускорение свободного падения.

 
Рис.1   Рис. 2

При последовательном соединении пружин (см. рис.1) силы упругости, возникающие в пружинах, равны между собой, а общее удлинение системы пружин складывается из удлинений в каждой пружине.

Коэффициент жесткости такой системы определяется по формуле:

, (2)

где k 1 — жесткость первой пружины; k 2 — жесткость второй пружины.

При параллельном соединении пружин (см. рис. 2) удлинение пружин одинаково, а результирующая сила упругости равна сумме сил упругости в отдельных пружинах.

Коэффициент жесткости при параллельном соединении пружин находится по формуле:

k рез = k 1 + k 2. (3)

 

Порядок выполнения работы

Задание 1.   Определение коэффициентов упругости двух пружин

1. Прикрепить пружину к штативу. Подвешивая к каждой пружине грузы в порядке возрастания их массы, измерять удлинение пружины D l.

2. По формуле F = mg рассчитать силу упругости.

3. Построить графики зависимости силы упругости от величины удлинения пружины. По виду графиков определить выполняется ли закон Гука.

4. По формуле (1) рассчитать коэффициент упругости пружины. Найти среднее арифметическое значение k ср.

5. Найти абсолютную погрешность каждого измерения

D ki = ê ki - k ср ê.

6. Найти среднее арифметическое значение абсолютной погрешности D k ср.

7. Результаты измерений и расчетов занести в таблицу.

Задание 2.   Экспериментальное определение коэффициентов упругости двух пружин, соединенных последовательно, соединенных параллельно.

1. Провести измерения (как описано в задании 1) и рассчитать коэффициенты упругости последовательно и параллельно соединенных пружин.

2. Найти среднее значение коэффициентов и погрешности их измерений. Результаты измерений и вычислений занести в таблицу.

3. По формулам (2) и (3) рассчитать теоретические значения коэффициентов упругости при последовательном и параллельном соединении пружин.

4. Найти погрешность эксперимента, сравнив теоретические значения коэффициента упругости с экспериментальными по формуле:

.

 

               
m, кг              
F, Н              
Первая пружина
D l 1, м              
k 1, Н/м             k ср =
D k 1, Н/м             D k ср =
Вторая пружина
D l 2, м              
k 2, Н/м             k ср =
D k 2, Н/м             D k ср =
Последовательное соединение пружин
D l, м              
k, Н/м             k ср =
D k, Н/м             D k ср =
Параллельное соединение пружин
D l, м              
k, Н/м             k ср =
D k, Н/м             D k ср =

Контрольные вопросы

Сформулируйте закон Гука.

Дайте определение деформации, коэффициента упругости. Назовите единицы измерения этих величин в СИ.

Как находится коэффициент упругости для параллельного и последовательного соединения пружин?

Лабораторная работа № 1-5

Изучение законов динамики

Поступательного движения

Цель работы: Теоретическое и экспериментальное изучение законов динамики поступательного движения. Определение зависимости ускорения материальной точки от ее массы и действующей внешней силы.
Оборудование: Экспериментальная установка (машина Атвуда), электронный секундомер, набор грузов разной массы.

Теоретические сведения

Динамика изучает причины, вызывающие механическое движение.

Инерция — способность тела сохранять состояние покоя или прямолинейного равномерного движения, если на это тело не действуют другие тела.

Масса m (кг) — количественная мера инертности тела.

Первый закон Ньютона:

Существуют такие системы отсчета, в которых тело находится в состоянии покоя или прямолинейного равномерного движения, если на него не действуют другие тела.

Системы отсчета, в которых выполняется первый закон Ньютона, называют инерциальными.

Сила (Н) — векторная величина, характеризующая взаимодействие между телами или частями тела.

Принцип суперпозиции сил:

Если на материальную точку действуют одновременно силы и , то их можно заменить равнодействующей силой :

Импульс тела (кг∙м/с) — векторная величина, равная произведению массы m материальной точки на его скорость :

,

Второй закон Ньютона:

где — равнодействующая сила, действующая на материальную точку.

Замечание. Если масса тела постоянна, то второй закон Ньютона принимает вид:

,

где — ускорение, приобретаемое телом массой m под действием силы .

Сила тяжести — сила, действующая на тело вследствие его притяжения к Земле или другим небесным телам.

Вблизи поверхности Земли тело массой m под действием силы тяжести движется с ускорением свободного падения . Поэтому по второму закону Ньютона сила тяжести равна:

.



Поделиться:


Последнее изменение этой страницы: 2016-04-18; просмотров: 2638; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.19.224 (0.006 с.)