Глк-глюкоза, Фру-фруктоза, Гал-галактоза 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Глк-глюкоза, Фру-фруктоза, Гал-галактоза



значение рН для ее активности составляет 6,7, а рН желудочного сока равно ~ 2. Лишь внутри пищевого комка этот фермент некоторое время продолжает действовать.

Последующее переваривание нерасщепленного или частично расщепленного крахмала происходит в кишечнике. В двенадцатиперстной кишке pH желудочного содержимого нейтрализуется бикарбонатами, содержащимися в секрете поджелудочной железы, и создается оптимальное значение pH 7,5-8 для действия панкреатической α-амилазы.

α-Амилаза поджелудочной железы гидролизует в верхнем отделе тонкого кишечника декстрины и оставшиеся нерасщепленными молекулы крахмала, расщепляя α1,4-гликозидные связи. Гидролиз происходит путем последовательного отщепления дисахаридных остатков. Так как панкреатическая амилаза не гидролизует α1,6-гликозидные связи, то продуктами реакции являются мальтоза и изомальтоза, в последней два остатка D-глюкозы связаны α1,6-гликозидной связью.

Мальтоза и изомальтоза вместе с другими пищевыми дисахаридами - сахарозой и лактозой - гидролизуются специфическими гликозидазами на поверхности клеток тонкого кишечника (возможно и внутри клеток) до соответствующих мономеров.

 

Гликозидазы тонкого кишечника синтезируются в клетках, но не секретируются в просвет кишечника, а образуют на поверхности клеток крупные ферментативные комплексы с различной субстратной специфичностью: сахаразо-изомальтазный (гидролизует связи в сахарозе, изомальтозе, мальтозе), гликоамилазный (проявляет экзоамилазную активность, катализует гидролиз олигосахаридов, а также расщепляет связи в мальтозе), β-гликозидазный (расщепляет лактозу).

3. Целлюлоза - полисахарид растительной пищи - не расщепляется в желудочно-кишечном тракте, так как фермент, способный гидролизовать β1.4-связи между остатками глюкозы, не вырабатывается у человека, хотя образуется бактериями в толстом кишечнике. Однако непереваренная целлюлоза способствует нормальной перистальтике кишечника.


37.Этапы аэробного распада глюкозы, энергетика этого процесса.

1. Гликолиз - специфический путь катаболизма глюкозы, в результате которого происходит расщепление глюкозы с образованием двух молекул пирувата - аэробный гликолиз (рис. 6.11, реакции 1-10,) или две молекулы лактата - анаэробный гликолиз (рис. 6.11, реакции 1-11).

 

Аэробный и анаэробный гликолиз начинается с реакции фосфорилирования глюкозы (рис. 6.11, реакция 1) и образования глюкозо-6-фосфата, который является своеобразной ловушкой для глюкозы, так как мембрана клетки непроницаема для фосфорилированной глюкозы (нет соответствующих транспортных белков). Все промежуточные соединения гликолиза также находятся в фосфорилированной форме; источником фосфатных групп в реакциях фосфорилирования являются АТФ и Н3РО4.

Все этапы гликолитического пути окисления глюкозы происходят в цитозоле. Большинство реакций гликолиза, за исключением трех (реакции 1, 3, 10), обратимы.

2. В аэробном и анаэробном гликолизе можно выделить два этапа.

А. Превращение глюкозы в две молекулы глицеральдегид-3-фосфата (рис. 6.11, реакции 1-5). Эта серия реакции протекает с потреблением АТФ.

Рис. 6.11. Аэробный и анаэробный распад глюкозы:

1-10 - реакции аэробного гликолиза; 1-11 - реакции анаэробного гликолиза; 12 - челночный механизм транспорта водорода в митохондрии (малат-аспартатный или глицерофосфатный) Х, ХН2 - переносчики водорода из цитозоля в митохондрии;(2) стехиометрический коэффициент. Этап А (реакции 1-5) - молекула глюкозы превращается в две молекулы триозы: глицеральдегид-3-фосфат и дигидроксиацетонфосфат, который изомеризуется в глицеральдегид-3-фосфат. В результате образуется две молекулы глицеральдегид-3-фосфата и дальнейший процесс удваивается. На этом этапе происходят две реакции фосфорилирования с затратой двух молекул АТФ (реакции 1 и 3). Этап Б (реакции 6-10) обеспечивает синтез АТФ. Реакция 6 - дегидрирование двух молекул глицеральдегид-3-фосфата, катализируемая NAD-зависимой дегидрогеназой. Регенерация NAD+ из образующейся NADH + H+ происходит в аэробном гликолизе c участием ЦПЭ и челночных механизмов транспорта водорода из цитозоля в митохондрии (реакция 12). В этой реакции синтезируется АТФ путем окислительного фосфорилирования АДФ. Реакции 7 и 10 - субстратное фосфорилирование АДФ; протекают как в аэробном, так и в анаэробном гликолизе. Реакция 11 - регенерация NАD в анаэробном гликолизе. Акцептором водорода является пируват, который превращается в лактат. Реакция 13 - перенос пирувата в митохондрии и окисление его до конечных продуктов в общем пути катаболизма

 

Б. Превращение глицеральдегидфосфата в пируват или лактат (рис. 6.11, реакции 6-10 и 6-11). Эти реакции связаны с образованием АТФ. На этом этапе происходит реакция дегидрирования глицеральдегид-3- фосфата (см. реакция 6) и образование NADH+H+.

3. Регенерация NAD+, необходимого для окисления новых молекул глицеральдегид-3-фосфата, происходит:

• при аэробном гликолизе посредством его окисления в ЦПЭ (реакция 12). При этом перенос водорода в митохондрии происходит с помощью специальных систем, называемых челночными, с помощью которых водород транспортируется через мембрану при участии пар субстратов, один из которых окисляется в цитозоле, а другой - в митохондриях, т.е. с обеих сторон митохондриальной мембраны находится специфическая дегидрогеназа. Известны две челночные системы: глицерофосфатная и малат-аспартатная (рис. 6.12, 6.13), которые отличаются друг от друга акцепторами водорода для ЦПЭ и, следовательно, количеством синтезированного АТФ. В глицерофосфатной системе водород передается на FAD-зависимую дегидрогеназу, поэтому Р/О = 2. Вторая система энергетически более эффективна, так как водород поступает в ЦПЭ через митохондриальный NAD+ и отношение Р/О составляет 3;

• при анаэробном гликолизе независимо от ЦПЭ. В этом случае окисление NADH осуществляется в результате восстановления пирувата в лактат (рис. 6.11, реакция 11).

4. Образование АТФ при аэробном гликолизе может идти двумя путями: путем субстратного фосфорилирования, когда для синтеза АТФ из АДФ и Н3РО4 используется энергия макроэргической связи субстрата (рис. 6.11, реакции 6, 10) и путем окислительного фосфорилирования за счет энергии переноса электронов и протонов по ЦПЭ (реакции 6, 12).

Рис. 6.12. Глицерофосфатная челночная систем:

 

1 - глицеральдегид-3-фосфатдегидрогеназа; 2 - глицерол-3-фосфатдегидрогеназа (цитозольный фермент); 3 - транслоказа, обеспечивающая транспорт глицерол- 3-фосфата из цитозоля во внутреннюю мембрану митохондрии; 4 - глицерол-3- фосфатдегидрогеназа (митохондриальный фермент); 5 - окисление FADH2 в ЦПЭ

Рис. 6.13. Малат-аспартатная челночная система:

1 - глицеральдегид-3-фосфатдегидрогеназа; 2, 3 - окислительно-восстановительная реакция, протекающая в цитозоле и митохондриях в противоположных направлениях; 2 - малатдегидрогеназа (цитозольный фермент); 3 - малатдегидрогеназа (митохондриальный фермент); 4, 5 - реакция трансаминирования, протекающая в цитозоле и митохондриях в противоположных направлениях; 6, 7 - транслоказы, обеспечивающие транспорт малата, аспартата, глутамата и α-кетоглутарата через мембрану митохондрий

5. Анаэробный гликолиз, или анаэробный распад глюкозы, (эти термины - синонимы) включает в себя реакции специфического пути распада глюкозы до пирувата и восстановление пирувата в лактат (рис. 6.11, реакции 1-11). АТФ при анаэробном гликолизе образуется только путем субстратного фосфорилирования (рис. 6.11, реакции 7, 10).

6. Аэробный распад глюкозы до конечных продуктов (СО2 и Н2О) включает в себя реакции аэробного гликолиза (рис. 6.11, реакции 1-10) и последующее окисление пирувата в общем пути катаболизма (реакция 13). Таким образом, аэробный распад глюкозы - это процесс полного ее окисления до СО2 и Н2О, а аэробный гликолиз - часть аэробного распада глюкозы.



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 117; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.66.13 (0.007 с.)