Лейкоциты: строение, классификация, функции, лейкоцитарная формула 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Лейкоциты: строение, классификация, функции, лейкоцитарная формула

Поиск

Существует такое понятие, как сдвиг лейкограммы влево и вправо.

  • Сдвиг лейкограммы влево — увеличение количества незрелых (палочкоядерных) нейтрофилов в периферической крови, появление метамиелоцитов (юных), миелоцитов;
  • Сдвиг лейкограммы вправо — уменьшение нормального количества палочкоядерных нейтрофилов и увеличение числа сегментоядерных нейтрофилов с гиперсегментированными ядрами (мегалобластная анемия, болезни почек и печени, состояние после переливания крови).

Лейкоциты — клетки округлой формы размером 7-20 мк, состоящие из ядра, однородной или зернистой протоплазмы. Их называют белыми кровяными тельцами за отсутствие цвета. А также гранулоцитами за счет наличия в цитоплазме гранул или агранулоцитами за отсутствие зернистости. В спокойном состоянии лейкоциты проникают сквозь стенки сосудов и выходят из кровотока.


Гранулоцитами называют белые клетки с зернистой протоплазмой, агранулоцитами — клетки без зернистости. Гранулоциты объединяют такие виды клеток, как базофилы, нейтрофилы и эозинофилы. Агранулоциты — объединяют лимфоциты и моноциты.

Базофилы Меньше всего среди лейкоцитов — округлой формы базофилов (1%) с палочковидными или сегментовидными ядрами и гранулами темно-фиолетовых цветов в цитоплазме. Гранулы или так называемую базофильную зернистость составляют регуляторные молекулы, белки и ферменты. Синтезирует базофилы мозг в костях, используя клетки базофильного миелобласта. Полностью созревшие клетки попадают в кровь и продолжают жить около 2-х дней, далее оседают в клетках тканей и выводятся организма.

 

Нейтрофилы В крови на эти клетки приходится 70% от всех белых телец. В округлых нейтрофилах с фиолетово-коричневыми гранулами ядро цитоплазмы бывает в форме палочки или состоит из сегментов (3-5), что соединены утонченными тяжами. Миелобласт нейтрофильный костного мозга является источником нейтрофилов. Разрушение зрелой клетки после 2-х-недельной жизни происходит в селезенке или печени. Цитоплазма нейтрофила содержит гранулы 250 видов, обладающие веществами и ферментами бактерицидными, регуляторными молекулами. С их помощью нейтрофилы выполняют свои функциональные обязанности по защите организма, используя фагоцитоз — захват бактерий или вирусов и перемещение внутрь себя для уничтожения этих болезнетворных агентов ферментами гранул.

Эозинофилы Они такие же округлые с сегментарной или палочковидной формой ядра. Клеточная цитоплазма наполнена ярко-оранжевыми крупными гранулами, одинаковых форм и размеров. Гранулы состоят из белков, фосфолипидов и ферментов. Эозинофильный миелобласт костного мозга — зона формирования клеток эозинофилов. Срок их жизни 8-15 суток, затем они выводятся через ткани во внешнюю среду. Фагоцитоз клетки используют в области кишечника, мочеполового тракта, слизистых оболочек, дыхательных путей. Они могут стать причиной проявления и развития аллергии.

 


Лимфоциты Лимфобласт в костном мозге продуцирует округлой формы и разных размеров, с крупным круглым ядром лимфоциты. Они относятся к иммунокомпетентным клеткам, поэтому созревают по особому процессу. Они отвечают за создание иммунитета с разнообразными иммунными реакциями. Если их окончательное созревание произошло в тимусе, тогда клетки называют Т-лимфоцитами, если в лимфоузлах или селезенке — В-лимфоцитами. Размер первых (их 80%) меньше размера вторых клеток (их 20%). Продолжительность жизни клеток — 90 дней. Они активно участвуют в реакциях иммунитета и защищают организм, используя одновременно также фагоцитоз. Ко всем болезнетворным вирусам и патологическим бактериям клетки проявляют неспецифическую резистентность — одинаковое воздействие.

 

Моноциты Крупная треугольная клетка с большим ядром не имеет зернистости. В голубой цитоплазме присутствуют множественные вакуоли — пустоты, придающие клетке вид пены. Ядро бывает сегментированным, а также бобовидной, округлой, палочковидной и лопастной формы. Монобласт костного мозга продуцирует моноциты. Их жизнедеятельность в кровяном русле продолжается 48-96 часов. Затем частично клетки разрушаются, остальные перемещаются в ткани на дозревание, перерождаясь, становятся макрофагами — белыми или фагоцитарными клетками, что долго живут и защищают организм. Макрофаги могут блуждать или оставаться на месте и подавлять деление вирусов.

Тромбоциты

Тромбоциты (кровяные пластинки от греч. thrombos – сгусток и cytos – клетка) мелкие дисковидные двояковыпуклые безъядерные постклеточные структуры диаметром 2–4 мкм, циркулирующие в крови.

Они представляют собой окруженные мембраной и лишенные ядра фрагменты цитоплазмы мегакариоцитов. Они образуются в красном костном мозге в результате фрагментации участков цитоплазмы мегакариоцитов (гигантских клеток костного мозга), поступают в кровь, где находятся в количестве 2–4•109 /л крови, из этого числа 15% обновляется ежедневно.

Средняя продолжительность жизни составляет 9–10 дней.

Функции тромбоцитов

1. Остановка кровотечения при повреждении стенки сосуда (первичный гемостаз) – основная функция тромбоцитов.

2. Обеспечение свертывания крови (гемокоагуляция) – вторичный гемостаз

3. Участие в реакции заживления ран (главным образом повреждения сосудистой стенки) и воспаления.

4. Обеспечение нормальной функции сосудов, в частности их эндотелиальной выстилки – ангиотрофическая.

Различают 5 основных форм тромбоцитов:

  1. Юные – 10%
  2. Зрелые – 80–85%
  3. Старые – 5–10%
  4. Дегенеративные – до 2%
  5. Гигантские формы

Молодые формы тромбоцитов крупнее старых.

Морфология трмбоцитов.

Тромбоцит окружен плазмолеммой и включает светлую про-зрачную наружную часть, называемую гиаломером, и централь-ную окрашенную часть, содержащую азурофильные гранулы –грануломер.

Плазмолемма покрыта снаружи толстым (50–200 нм) слоем гли-кокаликса. Она содержит многочисленные рецепторы, опо-средующие действие веществ. Активирующих или ингибирующих функции тромбоцитов, их адгезию и агрегацию.

Сама плазмолемма образует инвагинации с отходящими каналь-цами, также покрытыми гликокаликсом.

Гиаломер содержит две системы трубочек (канальцев) и большую часть элементов цитоскелета.

Цитоскелет тромбоцитов представлен микротрубочками, микрофиламентами и промежуточными филаментами.

– Микротрубочки в количестве 4–15 располагаются по периферии цитоплазмы и формируют мощный пучок (краевое кольцо) служащий каркасом и способствующий поддержанию формы тромбоцитов.

– Микрофиламенты образованы актином.

Свертывание крови.

Одним из проявлений защитной функции крови является ее способность к свертыванию. Свертывание крови (гемокоагуляция) является защитным механизмом Организма, направленным на сохранение крови в сосудистой системе. При нарушении этого механизма даже незначительное повреждение сосуда может привести к значительным кровопотерям.

В гемостатической реакции принимают участие: ткань, окружающая сосуд; стенка сосуда; плазменные факторы свертывания крови; все клетки крови, но особенно тромбоциты. Важная роль в свертывании крови принадлежит физиологически активным веществам, которые можно разделить на три группы:

• способствующие свертыванию крови;

• препятствующие свертыванию крови;

• способствующие рассасыванию образовавшегося тромба.

Сосудисто-тромбоцитарный механизм гемостаза. Этот механизм обеспечивает гомеостаз в наиболее часто травмируемых мелких сосудах (микроциркуляторных) с низким артериальным давлением. Он состоит из ряда последовательных этапов.

1. Кратковременный спазм поврежденных сосудов, возникающий под влиянием сосудосуживающих веществ, высвобождающихся из тромбоцитов (адреналин, норадреналин, серотонин).

2. Адгезия (прилипание) тромбоцитов к раневой поверхности, происходящая в результате изменения в месте повреждения отрицательного электрического заряда внутренней стенки сосуда на положительный. Тромбоциты, несущие на своей поверхности отрицательный заряд, прилипают к травмированному участку. Адгезия тромбоцитов завершается за 3-10 секунд.

3. Обратимая агрегация (скучивание) тромбоцитов у места повреждения. Она начинается почти одновременно с адгезией и обусловлена выделением поврежденной стенкой сосуда, из тромбоцитов и эритроцитов биологически активных веществ (АТФ, АДФ). В результате образуется рыхлая тромбоцитарная пробка, через которую проходит плазма крови.

4. Необратимая агрегация тромбоцитов, при которой тромбоциты теряют свою структурность и сливаются в гомогенную массу, образуя пробку, непроницаемую для плазмы крови. Эта реакция: происходит под действием тромбина, разрушающего мембрану тромбоцитов, что ведет к выходу из них физиологически активных веществ: серотонина, гистамина, ферментов и факторов свертывания крови. Их выделение способствует вторичному спазму сосудов. Освобождение фактора 3 дает начало образованию тромбоцитарной протромбиназы, т. е. включению механизма коагуляционного гемостаза. На агрегатах тромбоцитов образуется небольшое количество нитей фибрина, в сетях которого задерживаются форменные элементы крови.

5. Ретракция тромбоцитарного тромба, т. е. уплотнение и закрепление тромбоцитарной пробки в поврежденном сосуде за счет фибриновых нитей и гемостаз на этом заканчивается. Но в крупных сосудах тромбоцитарный тромб, будучи непрочным, не выдерживает высокого кровяного давления и вымывается. Поэтому в крупных сосудах на основе тромбоцитарного тромба образуется более прочный фибриновый тромб, для формирования которого включается ферментативный коагуляционный механизм.

Коагуляционный механизм гемостаза. Этот механизм имеет место при травме крупных сосудов и протекает через ряд последовательных фаз.

Первая фаза. Самой сложной и продолжительной фазой является формирование протромбиназы. Формируются тканевая и кровяная протромбиназы.

Образование тканевой протромбиназы запускается тканевым тромбопластином (фосфолипиды), представляющего собой фрагменты клеточных мембран и образующегося при повреждении стенок сосуда и окружающих тканей. В формировании тканевой протромбиназы участвуют плазменные факторы IV, V, VII, X. Эта фаза длится 5-10 с.

Вторая фаза. Образование протромбиназы знаменует начало второй фазы свертывания крови - образование тромбина из протромбина. Протромбиназа адсорбирует протромбин и на своей поверхности превращает его в тромбин. Этот процесс протекает с участием факторов IV, V, X, а также факторов 1 и 2 тромбоцитов. Вторая фаза длится 2-5 с.

Третья фаза. В третьей фазе происходит образование (превращение) нерастворимого фибрина из фибриногена. Эта фаза протекает в три этапа. На первом этапе под влиянием тромбина происходит отщепление пептидов, что приводит к образованию желеобразного фибрин-мономера. Затем с участием ионов кальция из него образуется растворимый фибрин-полимер. На третьем этапе при участии фактора XIII и фибриназы тканей, тромбоцитов и эритроцитов происходит образование окончательного (нерастворимого) фибрина-полимера. Фибриназа при этом образует прочные пептидные связи между соседними молекулами фибрина-полимера, что в целом увеличивает его прочность и устойчивость к фибринолизу. В этой фибриновой сети задерживаются форменные элементы крови, формируется кровяной сгусток (тромб), который уменьшает или полностью прекращает кровопотерю.

Спустя некоторое время после образования сгустка тромб начинает уплотняться, и из него выдавливается сыворотка. Этот процесс называется ретракцией сгустка. Он протекает при участии сократительного белка тромбоцитов (тромбостенина) и ионов кальция. В результате ретракции тромб плотнее закрывает поврежденный сосуд и сближает края раны.

Одновременно с ретракцией сгустка начинается постепенное ферментативное растворение образовавшегося фибрина - фибринолиз, в результате которого восстанавливается просвет закупоренного сгустком сосуда. Расщепление фибрина происходит под влиянием плазмина (фибринолизина), который находится в плазме крови в виде профермента плазминогена, активирование которого происходит под влиянием активаторов плазминогена плазмы и тканей. Он разрывает пептидные связи фибрина, в результате чего фибрин растворяется.

Ретракцию кровяного сгустка и фибринолиз выделяют как дополнительные фазы свертывания крови.Нарушение процесса свертывания крови происходит при недостатке или отсутствии какого-либо фактора, участвующего в гомеостазе.

Факторы, ускоряющие процесс свертывания крови:

• разрушение форменных элементов крови и клеток тканей (увеличивается выход факторов, участвующих в свертывании крови):

• ионы кальция (участвуют во всех основных фазах свертывания крови);

• тромбин;

• витамин К (участвует в синтезе протромбина);

• тепло (свертывание крови является ферментативным процессом);

• адреналин.

Факторы, замедляющие свертывание крови:

• устранение механических повреждений форменных элементов крови (парафинирование канюль и емкостей для взятия донорской крови);

• цитрат натрия (осаждает ионы кальция);

• гепарин;

• гирудин;

• понижение температуры;

• плазмин.

Регуляция свертывания крови. Регуляция свертывания крови осуществляется с помощью нейро-гуморальных механизмов. Возбуждение симпатического отдела вегетативной нервной системы, возникающее при страхе, боли, при стрессовых состояниях, приводит к значительному ускорению свертывания крови, что называется гиперкоагуляцией. Основная роль в этом механизме принадлежит адреналину и норадреналину. Адреналин запускает ряд плазменных и тканевых реакций.



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 247; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.164.252 (0.012 с.)