Возникновение и основные этапы развития жизни на Земле. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Возникновение и основные этапы развития жизни на Земле.



Жизнь на Земле связана с геологическими эонам и эрами. Эон – это крупный отрезок геологической истории, объединяющий несколько эр. В свою очередь эры подразделяются на периоды. Для каждой эры характерно индивидуальное развитие животного и растительного мира, которое часто зависело от климата, состояния земной коры, подземной деятельности.

Более детальное описание эонов представлено в таблице основных этапов развития жизни на Земле.

Эон Эра Период Характеристика
Катархей     Начался около 4,5 млрд. лет назад, закончился 4 млрд. лет назад. Осадочные породы неизвестны. Поверхность планеты безжизненная и испещрённая кратерами

Архей

Эоархей  

Длился от 4 до 2,5 млрд. лет назад. В конце эоархея появились первые одноклеточные организмы – анаэробные бактерии. Образование карбонатных отложений и полезных ископаемых. Формирование континентов. В неоархее образуется кислород благодаря цианобактериям

Палеоархей  
Мезоархей  
Неоархей  

Протерозой

Палеопротерозой

Сидерий

Период от 2,5 до 1,6 млрд. лет назад. Более совершенные цианобактерии выделяют большое количество кислорода, что приводит к кислородной катастрофе. Кислород становится губителен для анаэробных организмов. В статерии возникают первые аэробные эукариоты

Рясий
Орозирий
Статерий

Мезопротерозой

Калимий

Длился 1,6-1 млрд. лет назад. Формируются осадочные горные породы. В эктазии появляются первые многоклеточные организмы – красные водоросли. В стении возникают эукариоты, размножающиеся половым путём

Эктазий
Стений

Неопротерозой

Тоний

Начался 1 млрд. лет назад и закончился 542 млн. лет назад. Сильное оледенение земной коры. В эдиакарии появляются первые многоклеточные мягкотелые животные – вендобионты

Криогений
Эдиакарий

Фанерозой

Палеозой

Кембрий

Длился с 541 по 290 млн. лет назад. В начале эры появляется видовое разнообразие живых организмов. Между ордовиком и силуром произошло вымирание, в результате которого исчезло более 60 % живых существ, но уже в девоне жизнь начала осваивать новые экологические ниши. Возникли хвощи, папоротники, голосеменные растения, большое количество кистепёрых рыб, первые позвоночные наземные животные, насекомые, пауки, аммониты. В конце девона также происходит вымирание. В карбоне появляются рептилии, амфибии, моллюски, мшанки, членистоногие, хрящевые рыбы. В пермский период возникают жуки, сетчатокрылые насекомые, хищные зверообразные

Ордовик
Силур
Девон
Карбон
Пермь

Мезозой

Триас

Начался 252 млн. лет и закончился 66 млн. лет назад. На стыке перми и триаса происходит крупнейшее массовое вымирание, в результате которого исчезает 90 % морских обитателей и 70 % наземных. В юрском периоде появляются первые цветковые растения, вытесняющие голосеменные. Рептилии и насекомые занимают господствующее положение. В меловом периоде происходит похолодание и вымирание большинства растений. Это приводит к гибели травоядных, а затем и хищных рептилий. На смену приходят первые птицы и млекопитающие

Юра
Мел

Кайнозой

Палеоген

Начался 66 млн. лет назад и продолжается до сих пор. Разнообразие птиц, растений, насекомых. Появляются киты, морские ежи, головоногие, слоны, лошади. В антропогене – текущем периоде – около 2 млн. лет назад возникли первые люди (Homo)

Неоген
Антропоген

Панспермия

Гипотеза о занесении жизни на Землю с других космических тел имеет массу авторитетных защитников. На этой позиции стоял великий немецкий ученый Герман Гельмгольц и шведский химик Сванте Аррениус, российский мыслитель Владимир Вернадский и британский лорд-физик Кельвин. Однако наука – область фактов, и после открытия космической радиации и ее губительного действия на все живое панспермия, казалось, умерла.

Но чем глубже ученые погружаются в вопрос, тем больше всплывает нюансов. Так, теперь – в том числе и поставив многочисленные эксперименты на космических аппаратах – мы с куда большей серьезностью относимся к способностям живых организмов переносить радиацию и холод, отсутствие воды и прочие «прелести» пребывания в открытом космосе. Находки всевозможных органических соединений на астероидах и кометах, в далеких газопылевых скоплениях и протопланетных облаках многочисленны и не вызывают сомнений. А вот заявления об обнаружении в них следов чего-то подозрительно напоминающего микробы остаются недоказанными.

Легко заметить, что при всей своей увлекательности теория панспермии лишь переносит вопрос о возникновении жизни в другое место и другое время. Что бы ни занесло первые организмы на Землю – случайный ли метеорит или хитрый план высокоразвитых инопланетян, они должны были где-то и как-то родиться. Пусть не здесь и гораздо дальше в прошлом – но жизнь должна была вырасти из безжизненной материи. Вопрос «Как?» остается.

Ненаучно: Самозарождение

Спонтанное происхождение высокоразвитой живой материи из неживой – как зарождение личинок мух в гниющем мясе – можно связать еще с Аристотелем, который обобщил мысли множества предшественников и сформировал целостную доктрину о самозарождении. Как и прочие элементы философии Аристотеля, самозарождение было доминирующей доктриной в Средневековой Европе и пользовалось определенной поддержкой вплоть до экспериментов Луи Пастера, который окончательно показал, что для появления даже личинок мух нужны мухи-родители. Не стоит путать самозарождение с современными теориями абиогенного возникновения жизни: разница между ними принципиальная.

Первичный бульон

Это понятие тесно связано с успевшими обрести статус классических экспериментами, поставленными в 1950-х Стэнли Миллером и Гарольдом Юри. В лаборатории ученые смоделировали условия, которые могли существовать у поверхности молодой Земли, – смесь метана, угарного газа и молекулярного водорода, многочисленные электрические разряды, ультрафиолет, – и вскоре более 10% углерода из метана перешло в форму тех или иных органических молекул. В опытах Миллера – Юри было получено больше 20 аминокислот, сахара, липиды и предшественники нуклеиновых кислот.

Современные вариации этих классических экспериментов используют куда более сложные постановки, которые точнее соответствуют условиям ранней Земли. Имитируются воздействия вулканов с их выбросами сероводорода и двуокиси серы, присутствие азота и т. д. Так ученым удается получать огромное и разнообразное количество органики – потенциальных кирпичиков потенциальной жизни. Главной проблемой этих опытов остается рацемат: изомеры оптически активных молекул (таких как аминокислоты) образуются в смеси в равных количествах, тогда как вся известная нам жизнь (за единичными и странными исключениями) включает лишь L-изомеры.

Впрочем, к этой проблеме мы еще вернемся. Здесь же стоит добавить, что недавно – в 2015 году – кембриджский профессор Джон Сазерленд (John Sutherland) со своей командой показал возможность образования всех базовых «молекул жизни», компонентов ДНК, РНК и белков из весьма нехитрого набора исходных компонентов. Главные герои этой смеси – циановодород и сероводород, не столь уж редко встречающиеся в космосе. К ним остается добавить некоторые минеральные вещества и металлы, в достаточном количестве имеющиеся на Земле, – такие как фосфаты, соли меди и железа. Ученые построили детальную схему реакций, которая вполне могла создать насыщенный «первичный бульон» для того, чтобы в нем появились полимеры и в игру вступила полноценная химическая эволюция.

 

Гипотезу абиогенного происхождения жизни из «органического бульона», которую проверили эксперименты Миллера и Юри, выдвинул в 1924 году советский биохимик Александр Опарин. И хотя в «темные годы» расцвета лысенковщины ученый принял сторону противников научной генетики, заслуги его велики. В знак признания роли академика имя его носит главная награда, вручаемая Международным научным обществом изучения возникновения жизни (ISSOL), – Медаль Опарина. Премия присуждается каждые шесть лет, и в разное время ее удостаивались и Стэнли Миллер, и великий исследователь хромосом, Нобелевский лауреат Джек Шостак. Признавая громадный вклад и Гарольда Юри, в промежутках между вручениями Медали Опарина ISSOL (тоже каждые шесть лет) присуждает Медаль Юри. Получилась уникальная, настоящая эволюционная премия – с изменчивым названием.

 

Химическая эволюция

Теория пытается описать превращение сравнительно простых органических веществ в довольно сложные химические системы, предшественницы собственно жизни, под влиянием внешних факторов, механизмов селекции и самоорганизации. Базовой концепцией этого подхода служит «водно-углеродный шовинизм», представляющий эти два компонента (воду и углерод – NS) в качестве абсолютно необходимых и ключевых для появления и развития жизни, будь то на Земле или где-то за ее пределами. А главной проблемой остаются условия, при которых «водно-углеродный шовинизм» может развиться в весьма изощренные химические комплексы, способные – прежде всего – к саморепликации.

По одной из гипотез, первичная организация молекул могла происходить в микропорах глинистых минералов, которые выполняли структурную роль. Эту идею несколько лет назад выдвинул шотландский химик Александер Кейрнс-Смит (Alexander Graham Cairns-Smith). На их внутренней поверхности, как на матрице, могли оседать и полимеризоваться сложные биомолекулы: израильские ученые показали, что такие условия позволяют выращивать достаточно длинные белковые цепочки. Здесь же могли скапливаться нужные количества солей металлов, играющих важную роль катализаторов химических реакций. Глиняные стенки могли выполнять функции клеточных мембран, разделяя «внутреннее» пространство, в котором протекают все более сложные химические реакции, и отделяя его от внешнего хаоса.

«Матрицами» для роста полимерных молекул могли служить поверхности кристаллических минералов: пространственная структура их кристаллической решетки способна вести отбор лишь оптических изомеров одного типа – например, L-аминокислот, – решая проблему, о которой мы говорили выше. Энергию для первичного «обмена веществ» могли поставлять неорганические реакции – такие как восстановление минерала пирита (FeS2) водородом (до сульфида железа и сероводорода). В этом случае для появления сложных биомолекул не требуется ни молний, ни ультрафиолета, как в экспериментах Миллера – Юри. А значит, мы можем избавиться от вредных аспектов их действия.

 

Молодая Земля не была защищена от вредных – и даже смертельно опасных – компонентов солнечного излучения. Даже современные, испытанные эволюцией организмы были бы неспособны выдержать этого жесткого ультрафиолета – притом что само Солнце было значительно моложе и не давало достаточно тепла планете. Из этого возникла гипотеза о том, что в эпоху, когда творилось чудо зарождения жизни, вся Земля могла быть покрыта толстым – в сотни метров – слоем льда; и это к лучшему. Скрываясь под этим ледяным щитом, жизнь могла чувствовать себя вполне в безопасности и от ультрафиолета, и от частых метеоритных ударов, грозивших погубить ее еще в зародыше. Относительно прохладная среда могла также стабилизировать структуру первых макромолекул.

 

Черные курильщики

В самом деле, ультрафиолетовое излучение на молодой Земле, атмосфера которой еще не содержала кислорода и не имела такой замечательной штуки, как озоновый слой, должно было быть убийственным для любой зарождающейся жизни. Из этого выросло предположение о том, что хрупкие предки живых организмов были вынуждены существовать где-то, скрываясь от непрерывного потока стерилизующих все и вся лучей. Например, глубоко под водой – конечно, там, где имеется достаточно минеральных веществ, перемешивания, тепла и энергии для химических реакций. И такие места нашлись.

Ближе к концу ХХ века стало ясно, что океанское дно никак не может быть пристанищем средневековых монстров: условия здесь слишком тяжелые, температура невелика, излучения нет, а редкая органика способна разве что оседать с поверхности. Фактически это обширнейшие полупустыни – за некоторыми примечательными исключениями: тут же, глубоко под водой, поблизости от выходов геотермальных источников, жизнь буквально бьет ключом. Насыщенная сульфидами черная вода горяча, активно перемешивается и содержит массу минералов.

Черные курильщики океана – весьма богатые и самобытные экосистемы: питающиеся на них бактерии используют железосерные реакции, о которых мы уже говорили. Они являются основой для вполне цветущей жизни, включая массу уникальных червей и креветок. Возможно, они были основой и зарождения жизни на планете: по крайней мере, теоретически такие системы несут в себе все необходимое для этого.



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 113; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.66.206 (0.011 с.)