Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Измерение количества информацииСодержание книги Поиск на нашем сайте
Определить понятие «количество информации» довольно сложно из-за неопределенности самого понятия «информация». В решении этой проблем известны два подхода – кибернетический (вероятностный) и количественный (объемный). Кибернетический подход. Кибернетический подход сейчас применяется в основном в теории вероятностей и позволяет подсчитать количество информации, которое несет результат какого-то опыта (например, бросания монеты, игральной кости, раунд в рулетке и т.д.). Этот подход был развит в конце 40-х годов XXвека математиками Хартли и Шенноном. Основные полученные ими результаты заключаются в следующем: a) если какой-то опыт может иметь N равновероятных исходов, количество информации, появляющейся после его однократного проведения, вычисляется по формуле Хартли: (1) b) При введении какой-либо величины является вопрос о том, что принимать за единицу ее измерения. Из формулы (1) следует, что H=1 при N=2. Иначе говоря, в качестве единицы измерения принимается количество информации, связанное с однократным проведением опыта, состоящего в получении одного из двух равновероятных исходов. Результаты исходов обозначаются двоичными цифрами 0 и 1, а единица информации называется «бит» (от англ. BInary digiTs – двоичные цифры). c) Если проводится опыт с исходами, вероятности появления которых различны, то количество информации определяется формулой Шеннона: (2) Здесь N – количество исходов опыта, Pi – вероятность каждого исхода. Если проводится несколько независимых опытов, суммарное количество полученной информации равно сумме количеств информации, полученной после каждого из опытов. Например, определим количество информации, связанное с появлением каждого символа в сообщении, записанном русскими буквами. Русский алфавит (упрощенно) состоит из 33 букв и пробела, и, по формуле (1), бит. Однако, в русских словах (и в словах других языков) различные буквы встречаются неодинаково часто. Если воспользоваться таблицей частотности букв русского языка и формулой (2), то получится несколько меньший результат: 4,72бит. Объемный подход. Объемный подход измерения количества информации возник вместе с ЭВМ. Создателям компьютеров потребовался научный подход, допускающий не просто измерение количества информации, но и предлагающий способы ее преобразования, передачи и хранения. Вся информация в компьютере хранится, передается и обрабатывается в виде двоичных кодов – последовательностей двоичных цифр 0 и 1. Двоичная система выбрана потому, что в техническом устройстве наиболее просто реализовать два противоположных физических состояния – есть ток / нет тока, направление намагниченности и т.д. В компьютере бит является наименьшей возможной единицей информации. Доказано, что любая дискретная информация может быть представлена последовательностью битов (это вопрос из раздела кодирования), а, так как мы уже знаем о возможности дискретизации непрерывной информации с любой степенью точности, то можно считать, что любая информация может быть представлена последовательностью битов с любой степенью точности. Суммарный объем какой-либо информации подсчитывается просто по количеству требуемых для такой записи битов. При этом, очевидно, невозможно нецелое число битов, в отличие от вероятностного подхода. Для удобства использования введены и более крупные единицы: 1 байт = 8 бит 1 килобайт (кБ) = 1024 байт 1 мегабайт (МБ) = 1024 кБ 1 гигабайт (ГБ) = 1024МБ.
Между вероятностным и объемным подходом существует весьма неоднозначное соответствие. Не всякий текст, даже записанный двоичными символами, допускает измерение объема информации в кибернетическом смысле, но заведомо допускает в объемном. Даже если некоторое сообщение допускает измерение количества в обоих смыслах, то результаты измерений далеко не всегда совпадают. Но, при этом, кибернетическое количество одной и той же информации не может быть больше объемного.
КОДИРОВАНИЕ ИНФОРМАЦИИ Формирование представления информации называется ее кодированием. В более узком смысле под кодированием понимается переход от исходного представления информации, удобного для восприятия информации человеком, к представлению, удобному для хранения, передачи и обработки. В этом случае обратный переход к исходному представлению называется декодированием. При кодировании информации ставятся следующие цели: · удобство физической реализации; удобство восприятия; · высокая скорость передачи и обработки; · экономичность, т.е. уменьшение избыточности сообщения; · надежность, т.е. защита от случайных искажений; · сохранность, т.е. защита от нежелательного доступа к информации. Поскольку информация представляется в компьютере последовательностью двоичных цифр, для понимания процессов обработки и кодирования информации необходимо познакомиться с математическими основами теории систем счисления, в частности, двоичной, восьмеричной и шестнадцатеричной. СИСТЕМЫ СЧИСЛЕНИЯ Система счисления – принятый способ записи чисел и сопоставления этим записям реальных значений. Все системы счисления можно разделить на два класса – позиционные и непозиционные. В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти. В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая - 7 единиц, а третья - 7 десятых долей единицы. Сама же запись числа 757,7 означает сокращенную запись выражения 700 + 50 + 7 + 0,7 = 7•102 + 5•101 + 7•100 + 7•10-1 = 757,7. Любая позиционная система счисления характеризуется своим основанием. Основание позиционной системы счисления - это количество различных знаков или символов, используемых для изображения цифр в данной системе.
|
||||
Последнее изменение этой страницы: 2021-04-12; просмотров: 363; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.175.66 (0.008 с.) |