Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Уравнения рабочего процесса в АМ.Содержание книги
Поиск на нашем сайте
Уравнение напряжения обмотки статора , (2.8) где U 1 — напряжение, подводимое к обмотке статора; Е 1— ЭДС, наводимая в обмотке статора; Z 1= r 1+ jx 1 — комплексное сопротивление обмотки статора, состоящее из активного сопротивления обмотки статора r 1и ее индуктивного сопротивления рассеяния x 1; I 1 — ток в обмотке статора. Уравнения напряжения эквивалентного неподвижного ротора , (2.9) где Z 2э = r 2/s+ jx 2.; Z 2 = r2 + jx2 – полное сопротивление обмотки неподвижного ротора. Уравнение МДС . (2.10) С учётом () уравнение (2.10) запишем в виде После преобразований получим уравнение для токов , (2.11) где . Электродвижущие силы Е 1и Е 2 индуцируются в обмотках асинхронной машины основным потоком Ф, являющимся потоком взаимной индукции. Этот поток создается результирующей МДС F 12. Результирующей МДС F 12 пропорционален ток I 12, который согласно (2.11) можно считать составляющей тока статора I 1: (2.12)
Вопрос 3 Характеристика ХХ. Характеристика холостого хода представляет собой зависимость напряжения генератора U от тока возбуждения при постоянном числе оборотов п в токе якоря = 0: U = f(IB). Характеристика холостого хода имеет две ветви — восходящую и нисходящую (рис. 299). Остаточный магнетизм полюсов и ярма при отсутствии возбуждения обусловливает некоторое напряжение, обычно равное 2-3% UH. Нисходящая ветвь из-за остаточного магнетизма проходит несколько выше восходящей.
Билет 19 Вопрос 1 Линейные, дуговые, электрические машины Устройство линейного (а) и дугового (б) асинхронных двигателей показано на рис. Магнитопровод статора 1 линейного двигателя имеет форму параллелепипеда, дугового двигателя — дугового сектора. Разноименнополюсная трехфазная первичная обмотка 2 размещается в линейном двигателе в пазах на одной из граней параллелепипеда, в дуговом двигателе — в пазах на внутренней (или внешней) цилиндрической поверхности дугового сектора. Подвижная часть в линейном двигателе перемещается поступательно. Ее магнитопровод 4, как и магнитопровод статора, имеет форму параллелепипеда (рис., а). В пазах на поверхности подвижного магнитопровода, обращенной к статору, размещается короткозамкнутая обмотка 3. Подвижная часть в дуговом двигателе вращается. Она называется, как и в обычном двигателе, ротором. Ротор 4 имеет форму полого цилиндра (рис., б). В пазах на его наружной цилиндрической поверхности размещается короткозамкнутая обмотка 3. Как в линейном, так и в дуговом двигателе подвижная часть может быть выполнена массивной из магнитного материала. Причем в этом случае отпадает необходимость в короткозамкнутой обмотке, а иногда в качестве ротора удается использовать цилиндрические массивные детали рабочей машины. Рабочие свойства двигателей в зависимости от исполнения подвижной части аналогичны свойствам двигателя либо с короткозамкнутым ротором, либо с массивным ротором. Однако энергетические показатели линейных и дуговых двигателей хуже, чем у машин с кольцевым статором. Объясняется это тем, что в этих двигателях возникают краевые эффекты, так как их статоры не замкнуты в кольцо. Линейные асинхронные машины можно использовать для получения возвратно-поступательного движения за счет периодического изменения чередования фаз обмотки статора, например, в металлообрабатывающих станках. В этом случае длина подвижной части должна быть больше длины неподвижной на требуемое перемещение. Однако из-за существенного увеличения массы перемещающейся детали станка за счет массы подвижной части двигателя, а также энергии, бесполезно теряемой в каждом цикле ускорения и торможения, такие линейные двигатели заметного распространения не получили. Более перспективно использование линейных двигателей в электрической тяге, в особенности для высокоскоростного транспорта. На рис. 12 показана возможная схема применения линейного асинхронного двигателя на электровозе. Магнитопровод статора 1 вместе с многофазной обмоткой 2 укреплен на электровозе и присоединен к сети переменного тока. Образуется бегущее поле, взаимодействующее с массивным ферромагнитным телом — рельсом 3 и стремящееся увлечь его за собой. Но так как рельс неподвижно закреплен, приходит в движение со скоростью v статор вместе с электровозом. Дуговые машины применяются в тех случаях, когда ротор требуется привести во вращение со сравнительно небольшой угловой скоростью. Тяговый линейный двигатель Действительно, статор дуговой машины, имеющий число периодов р и занимающий дугу с центральным углом уд (рис. 1, б), создает на радиусе R поле, вращающееся с линейной скоростью. https://leg.co.ua/info/elektricheskie-mashiny/lineynye-i-dugovye-asinhronnye-dvigateli.html Вопрос 2 Условия устойчивости работы электродвигателя. ПТ При работе двигателя всегда возникают определенные возмущения режима работы (кратковременные колебания напряжения сети, случайные кратковременные изменения момента нагрузки на валу и так далее). Такие возмущения чаще всего бывают небольшими и кратковременными, однако при этом происходят, хотя также небольшие и кратковременные, нарушения равенства моментов установившегося режима работы, вследствие чего возникает момент M дин и изменяется скорость вращения. Под устойчивостью работы двигателя понимается его способность вернуться к исходному, установившемуся режиму работы при малых возмущениях, когда действие этих возмущений прекратится. Иными словами, работа двигателя называется устойчивой, если бесконечно малые в пределе возмущения его работы вызывают лишь столь же малые изменения величин, характеризующих режим его работы, например скорости вращения, тока якоря и так далее. Двигатель неустойчив в работе, если подобные малые возмущения приводят к большим изменениям режима работы. При неустойчивой работе небольшие кратковременные возмущения вызывают либо непрерывное изменение режима (n, I а и так далее) в каком-либо одном направлении, либо приводят к колебательному режиму с возрастанием амплитуд колебаний n, I а и так далее. Естественно, что в условиях эксплуатации необходимо обеспечить устойчивый режим работы двигателя. При неустойчивости двигателя нормальная его работа невозможна, и обычно происходит авария. Устойчивость работы двигателя зависит от вида его механической характеристики M = f (n) и от вида зависимости момента сопротивления на валу от скорости вращения M ст = f (n). Вид последней зависимости определяется свойствами рабочей машины, приводимой в движение двигателем. Например, у металлорежущих станков, если установка резца не изменяется, M ст ≈ const, то есть M ст не зависит от скорости вращения, а у вентиляторов и насосов M ст ∼ n в квадрате.
На рисунке 1, а и б изображены два характерных случая работы двигателя. Установившемуся режиму работы (M = M ст) со скоростью вращения n 0 соответствует точка пересечения указанных двух характеристик. Если зависимости M = f (n), и M ст = f (n) имеют вид, изображенный на рисунке 1, а, то при случайном увеличении n в результате возмущения на Δ n тормозной момент M ст станет больше движущего M (Mст > M) и поэтому двигатель будет затормаживаться, что заставит ротор вернуться к исходной скорости n 0. Точно так же, если в результате возмущения скорость двигателя уменьшится на Δ n, то будет M ст < M, поэтому ротор станет ускоряться и снова будет n = n 0. Таким образом, в рассматриваемом случае работа устойчива. Как следует из рисунка 1, а, при этом
что и является признаком, или критерием, устойчивости работы двигателя. При зависимостях M = f (n) и M ст = f (n) вида рисунка 1, б работа неустойчива. Действительно, при увеличении n от n = n 0 до n = n 0 + Δ n будет M > M ст, возникнет избыток движущего момента, скорость n начнет нарастать, причем избыточный момент M – M ст увеличится еще больше, n еще возрастет и так далее. Если в результате возмущения n = n 0 – Δ n, то M < M ст и n будет непрерывно уменьшаться. Поэтому работа в точке M = M ст и n = n 0 невозможна. Как следует из рисунка 1, б, в этом случае
что является признаком неустойчивости работы двигателя. Из изложенного следует, что двигатель с данной механической характеристикой M = f (n) может работать устойчиво или неустойчиво в зависимости от характеристики M ст = f (n) рабочей машины. Возникновение неустойчивости наиболее вероятно при такой механической характеристики двигателя M = f (n) или n = f (M), когда M и n увеличиваются или уменьшаются одновременно (рисунок 1, б). В частности, в этом случае работа неустойчива при M ст = f (n) = const (например, металлорежущие станки). Поэтому двигателей с такими механическими характеристиками не строят.
Вопрос 3 Опыт холостого хода и короткого замыкания трансформатора 1. Опыт холостого хода. Холостым ходом трансформатора называется такой режим его работы, при котором первичная обмотка включена на номинальное напряжение , а вторичная обмотка разомкнута
Режим холостого хода позволяет опытным путем установить следующие характерные для трансформатора величины: а) коэффициент трансформации; б) ток холостого хода; в) потери мощности в стали. Коэффициент трансформации трансформатора , где и – число витков обмоток. Мощность определяет затраты энергии в пределах трансформатора. Она приблизительно равна потерям в стали, поскольку потери в стали независимы от нагрузки трансформатора, так как при работе трансформатора магнитный поток почти не меняется. Поэтому при любой нагрузке. При холостом ходе . Коэффициент мощности нагруженного трансформатора в основном зависит от коэффициента мощности нагрузки. При холостом ходе обычно не превышает 0,2…0,3. 2. Опыт короткого замыкания. Короткое замыкание трансформатора – испытательный режим, при котором вторичная обмотка замкнута накоротко, а в первичную включено такое пониженное напряжение, чтобы ток первичной обмотки был равен номинальному. Это напряжение, называемое напряжением короткого замыкания, является одной из постоянных, характеризующих трансформатор. Обычно оно составляет 5…10 % номинального напряжения.
Потери в обмотках трансформатора определяются с помощью опыта короткого замыкания. Мощность, затраченная при коротком замыкании, почти целиком расходуется на нагревание обмоток трансформатора. По мощности потерь при коротком замыкании можно рассчитать потери в обмотках при любой нагрузке трансформатора. Для этого потери при замыкании относят к току только первичной обмотки и некоторому условному сопротивлению , выражающему пропорциональность между током и мощностью: ; . Тогда потери в обмотках, или потери в меди , при любой нагрузке находятся из значения тока первичной обмотки: . Также потери в меди можно определить, используя коэффициент загрузки ; . Коэффициент полезного действия трансформатора рассчитывается из соотношения мощностей, приложенных ко вторичной и первичной обмоткам: , где – потери мощности в трансформаторе. Билет 20 Вопрос 1 Работа машины постоянного тока под нагрузкой. Как и все электрические машины, машина постоянного тока обратима. Она работает в режиме генератора, если ее якорь вращается первичным двигателем, главное магнитное поле возбуждено, а цепь якоря соединена через щетки с приемником. При таких условиях под действием ЭДС, индуктируемой в обмотке якоря, в замкнутой цепи якорь — приемник возникает ток, совпадающий с ЭДС по направлению. Взаимодействие тока якоря с главным магнитным полем создает на валу генератора тормозной момент, который преодолевается первичным двигателем. Генератор преобразует механическую энергию в электрическую. В двигательном режиме цепи якоря и возбуждения машины присоединены к источнику электроэнергии. Взаимодействие тока якоря с главным магнитным полем создает вращающий момент. Под действием последнего вращающийся якорь преодолевает момент нагрузки на валу. Двигатель преобразует электрическую энергию в механическую. При этом ЭДС якоря противодействует току в цепи якоря и направлена ему навстречу.
|
|||||||||||||
Последнее изменение этой страницы: 2021-02-07; просмотров: 187; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.61.176 (0.007 с.) |