Как выглядит ультрафиолетовое небо. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Как выглядит ультрафиолетовое небо.



 

Ультрафиолетовый (УФ) свет имеет длину волны от 10 до 400 нанометров (нм). Невидимый для человеческого глаза, но некоторые животные, например такие как пчелы, видят в этом диапазоне.

 

УФ фотоны несут в себе гораздо больше энергии, чем фотоны видимого света. Поэтому ультрафиолетовый свет от Солнца вызывает солнечные ожоги или даже рак кожи.

 

К счастью, большая часть УФ излучения поглощается в атмосфере Земли, в основном озоном. Вот почему вызывает опасение угроза атаки озонового слоя ХФУ-газами (хлорфторуглероды).

 

Только очень горячие объекты, такие как молодые массивные звезды и маленькие белые карлики, излучают большую часть своей энергии в виде ультрафиолетовых волн.

 

Большинство звезд более тусклые в УФ, чем в видимом диапазоне. Так что, будь у нас УФ-чувствительные глаза, ночное небо выглядело бы весьма невыразительным.

 

Космическое ультрафиолетовое излучение можно изучать только из космоса. Известные УФ спутники: International Ultraviolet Explorer (IUE, [1978–1996]), FUSE (1999).

 

Космический телескоп «Хаббл» также имеет УФ спектрограф/камеру STIS. Установлен в 1997, вышел из строя в 2004, отремонтирован космонавтами в 2009.

 

Настоящий наиболее активный УФ космический телескоп — это GALEX (Galaxy Evolution Explorer), запущенный в 2003. Исследует формирование звезд в отдаленных галактиках.

 

УФ телескопы могут также обнаружить присутствие тепло-горячей межгалактической среды (WHIM): очень разреженного газа между галактиками и скоплениями галактик.

 

Присутствие атомов кислорода и азота в WHIM выявляется при отрыве электронов за счет поглощения определенных частот УФ излучения от далеких квазаров.

 

Между тем, УФ камеры на борту солнечных космических телескопов, таких как SOHO и Solar Dynamics Observatory, отслеживают взрывы вспышек на Солнце.

 

Как астрономы делают рентген Вселенной?

 

Самые высокоэнергетические виды излучения в природе — рентгеновские лучи (Х-лучи, длина волны 0,01–10 нм) и гамма-лучи (все, что короче 0,01 нм).

 

На Земле рентгеновские лучи используются в медицинских целях. Энергия их квантов достаточна для прохождения через ткани человека; могут вызвать рак, если доза слишком велика.

 

Гамма-лучи: обладают еще большей энергией квантов. Образуются в ядерных реакциях. Могут быть смертельными. К счастью, атмосфера Земли блокирует космические X- и гамма-лучи.

 

Ракетный эксперимент в 1949 обнаружил рентгеновское излучение Солнца. В 1962 еще один ракетный эксперимент обнаружил первый космический рентгеновский источник, Скорпион Х-1.

 

С тех пор летали многие рентгеновские спутники, в том числе Chandra (НАСА) и XMM-Newton (ЕКА), которые функционируют и в настоящее время.

 

Рентгеновские лучи проходят сквозь зеркало телескопа, поэтому нужна специальная оптика и/или детекторы, чтобы получить спектры или создать рентгеновский образ неба.

 

Рентгеновские лучи генерируются чрезвычайно горячим газом (млн градусов), например когда он втягивается в черную дыру или сотрясается в остатках сверхновой.

 

Спутники с гамма-излучением: Комптоновская обсерватория (1991–2000), а также Integral (ЕКА) и Fermi (НАСА) — функционируют и в настоящее время.

 

Важная область исследований: всплески гамма-лучей. Большинство событий во Вселенной, сопровождающихся выбросом энергии, вызваны взрывающимися звездами-гигантами или слиянием нейтронных звезд.

 

Взаимная аннигиляция материи и антиматерии и распад гипотетических частиц темной материи также производит рассеянные гамма-лучи.

 

Высокоэнергетические фотоны гамма-лучей генерируют поток вторичных частиц в атмосфере Земли, наблюдаемых с помощью наземных инструментов.

 

Рентгеновские и гамма-лучи открывают высокоэнергетическую Вселенную ищущим острых ощущений астрономам: горячие, самые яростные и самые взрывоопасные события в природе.

 

Что такое космические лучи?

 

Это не лучи, а быстрые заряженные частицы из космоса, происхождение которых еще плохо изучено.

 

В 1912, летая на воздушном шаре на высоте 5300 м, австрийский физик Виктор Гесс обнаружил, что атомы в воздухе на больших высотах лишены большей части электронов.

 

Американский физик Роберт Милликен ошибочно полагал, что такая «ионизация» вызвана высокой энергией фотонов. Он ввел термин «космические лучи».

 

Около 90 % частиц в космических лучах являются протонами (ядра атома водорода); 9 % — альфа-частицы (ядра гелия), 1 % — более тяжелые ядра.

 

При столкновении с молекулами воздуха космические лучи производят потоки вторичных частиц и очень слабое свечение, известное как излучение Вавилова — Черенкова.

 

Наземные детекторы частиц, расположенные на большой площади, регистрируют атмосферные потоки. Сверхчувствительные детекторы света регистрируют излучение Вавилова — Черенкова.

 

Самой мощной обсерваторией космических лучей на сегодняшний день является обсерватория Пьера Оже в Аргентине: 1600 детекторов, распределенных более чем на 3000 км2.

 

К сожалению, заряженные частицы отклоняются магнитным полем Млечного Пути, так что направление прихода на Землю не связано с местом их рождения.

 

Космические частицы сверхвысоких энергий (КЧСВЭ) — это протоны, движущиеся почти со скоростью света и переносящие каждый столько же энергии, сколько теннисный мяч при сильной подаче.

 

Эти КЧСВЭ могут быть в 50 млн раз более быстрыми, чем частицы самых высоких энергий, образующиеся в любом искусственном ускорителе частиц.

 

КЧСВЭ очень редки. Они не легко отклоняются. Могут быть созданы в относительно близких активных галактиках, скрывающих центральные черные дыры.

 

Космические лучи с меньшими энергиями, вероятно, ускоряются в ударных волнах от взрывов сверхновых, но точный механизм пока не ясен.

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 43; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.174.76 (0.008 с.)