Классические промышленные способы получения фенолов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классические промышленные способы получения фенолов



Структура государственной фармакопеи, ОФС, ФС, ВФС, ФСП и их значение в оценке качества лекарственных средств.

Структура фармакопейной статьи:

Вводная часть. В вводной части (преамбуле) указывается: -время сбора сырья (фаза вегетации, иногда календарный срок) и о6язательно приводится характеристика сырья по режиму его технологической обработки: - высушенное, обмолоченное, свежесобранное, свежезамороженное и т.д.; - дикорастущее или культивируемое растение; - его жизненная форма; - название производящего растения и семейства на русском языке и латыни.

Внешние признаки. Важнейший показатель подлинности и чистоты сырья. В этом разделе указывается состав сырья; характерные диагностические признаки, характерные запах и вкус (для не ядовитых видов), размеры сырья.

Микроскопия. Важнейший метод определения подлинности лекарственного сырья. Раздел содержит: диагностические признаки анатомического строения сырья (для некоторых видов приводится люминесцентная микроскопия); вид микропрепарата, на котором проводится исследование.

Качественные реакции. В разделе приводятся собственно качественные, гистохимические реакции, или хроматографические пробы подлинности, на основные группы действующих веществ, методика их выполнения и результаты.

Числовые показатели. В раздел включены специфические показатели и их нормы - для цельного, резаного или порошковидного сырья, которые являются стандартом для всех видов лекарственного растительного сырья и определяют его качество: содержание действующих или экстрактивных веществ, золы общей и золы нерастворимой в 10% растворе хлористоводородной кислоты, примесей и измельченности.

Количественное определение. Приводится методика количественного определения основных действующих веществ в виде суммарного содержания, в пересчете на какое-либо вещество, содержащееся в данном сырье. В случае, если выделяется индивидуальное вещество (например, платифиллин и пр.), нормируют содержание именно этого компонента в сырье. Если методика количественного анализа изложена в ГФ XI выпуск I, то в частной фармакопейной статье приводится ссылка на нее.

Маркировка.

Радиационный контроль.

Микробиологическая чистота.

Упаковка. Указаны виды упаковки и масса сырья в единице упаковки. Хранение. Указывается список сырья. Срок годности. Время, в течение которого сырье может быть использовано.

Применение. Фармакологическое действие.

Приказ МЗ РФ N 756н

Приказ Министерства здравоохранения и социального развития Российской Федерации (Минздравсоцразвития России) от 26 августа 2010 г. N 756н г. Москва "Об утверждении порядка разработки общих фармакопейных статей и фармакопейных статей и включения их в государственную фармакопею, а также размещения на официальном сайте в сети "Интернет" данных о государственной фармакопеи"

Дата первой официальной публикации: 6 сентября 2010 г.

Опубликовано: в "РГ" - Федеральный выпуск №5278 6 сентября 2010 г.

Вступает в силу 17 сентября 2010 г.

Зарегистрирован в Минюсте РФ 31 августа 2010 г. Регистрационный N 18298

В соответствии со статьей 7 Федерального закона от 12 апреля 2010 г. N 61-ФЗ "Об обращении лекарственных средств" (Собрание законодательства Российской Федерации, 2010, N 16, ст. 1815; N 31, ст. 4161) приказываю:

Утвердить Порядок разработки общих фармакопейных статей и фармакопейных статей и включения их в государственную фармакопею, а также размещения на официальном сайте в сети "Интернет" данных о государственной фармакопеи согласно приложению.

ФС- Фармакопейные статьи.

Утверждаются на лекарственные средства и растительное сырье серийного производства, разрешенные для медицинского применения и включенные в Государственный Реестр Российской Федерации.

Фармакопейные статьи подразделяют на общие фармакопейные статьи (ОФС) и фармакопейные статьи частные (ФС).

Общие фармакопейные статьи бывают двух видов:

- ОФС, содержащие основные требования к лекарственной форме (настой и отвары, настойки, экстракты, сборы, брикеты и т.д.).

- ОФС, содержащие описание стандартных методов испытаний лекарственных средств, основные понятия и термины, общие требования к лекарственному растительному сырью.

Общие примеси. Определение общих примесей по ГФXI (хлориды, сульфаты, соли аммония, кальция, железа, цинка, тяжелых металлов, мышьяка (8 примесей) и ГФ XII. Химические реакции, используемые для обнаружения примесей.

При проведении испытаний на общие примеси используют химические реакции и систему эталонных растворов. Благодаря эталонным растворам ускоряется исследование и увеличивается точность (относительная ошибка метода ± 10 %).

ГФ использует 2 основных способа определения содержания примесей:

  • эталонный (если установлена ФС ПДК, например, в препарате «Меди сульфат» хлоридов должно быть не более 0,005%) и
  • безэталонный (если примеси не должно быть).

Общие примеси: хлориды, сульфаты, ионы аммония, кальция, железа (II и III), цинка, соли тяжелых металлов, мышьяк.

Вещество, из которого изготавливается эталонный раствор, называется исходным веществом. При выборе исходного вещества учитывается возможность точного дозирования (отвешивания) и устойчивости при хранении. В некоторых случаях исходное вещество одно, а при растворении получают другое.

Основной реактивтот, с помощью которого непосредственно определяется примесь. Для увеличения чувствительности используют определенную среду. При этом, чаще всего, эффекты в эталонном растворе и исследуемом образце будут несколько отличаться и могут отличаться от эффекта той же реакции при определении подлинности препаратов содержащих тот же ион.

Реакции обнаружения мышьяка

Источником этой примеси может быть аппаратура, исходное сырье, растворители, используемые при производстве ЛП.

В ГФ Х1 описано 2 метода определения этой примеси.

Метод 1. Реакция Зангера-Блека применяется, если в статье нет специальных указаний.

Метод основан на восстановлении соединений мышьяка водородом в момент выделения (металлическим цинком в среде разведенной хлористоводородной кислоты или серной) до мышьяковистого водорода (арсина). Арсин проходя через бумажку, обработанную с дихлоридом ртути (II) с образует соединения окрашенные в зависимости от концентрации арсина в оранжевый или жёлтый цвет, а после обработки этой бумажки раствором калия йодида - в буровато-коричневый. Применение калия йодида позволяет повысить чувствительность реакции.

Исходное вещество – мышьяка (III) оксид As2О3, навеску предварительно растворяют в 0,1 М растворе натрия гидроксида и нейтрализуют 0,05 М раствором серной кислоты. Основной реактив – дихлорид ртути, дополнительный реактив – калия йодид.

Навеску ЛВ предварительно обрабатывают: неорганические – хлористоводородной кислотой разведенной или неорганические - пергидролем.

As2O3 + 6Zn + 12HCl 2AsH3 ↑ + 6ZnCl2 + 3H2O

арсин

2HCl ZnCl2

Zn + H2SO4 → ZnSO4 + 2H

As2O3 + 6H2 → 2AsH3↑ + 3H2O

AsH3 + HgCl2 AsH2(HgCl) + HCl

AsH3 + 2HgCl2 AsH(HgCl)2 + 2HCl

AsH3 + 3HgCl2 As(HgCl)3 +3HCl

AsH3 + As(HgCl)3 As2Hg3 ↓+ 3HCl

HgCl2 + 2KJ → HgJ2↓ + 2KCl

HgCl2 + 2KJ → K2HgJ4

Метод 1 не применяется в случае присутствия наряду с мышьяком селена, теллура и в соединениях содержащих сурьму, висмут, ртуть, серебро, сульфиды и сульфиты. В этом случае в статье ГФ дается указание об использовании метода 2.

  1. Метод 2. Реакция Буго-Тиле.

Метод основан на восстановлении соединений мышьяка с фосфорноватистой кислотой в присутствии хлористоводородной кислоты при нагревании до металлического мышьяка. В зависимости от концентрации в исследуемом растворе – бурый осадок или бурое окрашивание. В эталоне – бурое окрашивание. Фосфорноватистая кислота получается при взаимодействии основного реактива – гипофосфита натрия и хлористоводородной кислоты разведенной:

NaH2PO2 + HCl H3PO2 + NaCl

As2O3 + 3H3PO2 2As↓ + H3PO3

As2O5 + 5H3PO2 2As↓+ 5H3PO3

Перечисленные испытания на примеси являются общими для большинства препаратов и дают лишь косвенную оценку степени очистки вещества.

Таким образом, можно сделать вывод, что существуют 2 группы примесей, отношение к которым определяется степенью их опасности для здоровья человека. Это влияющие на фармакологический эффект (их не должно быть в препарате) и не влияющие, свидетельствующие о степени очистки.

8. Приготовление эталонных растворов для определения общих примесей (8 примесей). Исходные вещества и растворители для приготовления эталона. Реактивы для определения каждого из ионов. Правила определения допустимых и недопустимых примесей.

При проведении испытаний на общие примеси используют химические реакции и систему эталонных растворов. Благодаря эталонным растворам ускоряется исследование и увеличивается точность (относительная ошибка метода ± 10 %).

ГФ использует 2 основных способа определения содержания примесей:

  • эталонный (если установлена ФС ПДК, например, в препарате «Меди сульфат» хлоридов должно быть не более 0,005%) и
  • безэталонный (если примеси не должно быть).

Эталонэто образец, содержащий определенное, точно известное количество открываемой примеси, которое является пределом ее содержания, применяющийся для определения присутствия примесей в ЛП и приблизительной оценки их количества.

Реакции обнаружения мышьяка

Исходное вещество – мышьяка (III) оксид As2О3, навеску предварительно растворяют в 0,1 М растворе натрия гидроксида и нейтрализуют 0,05 М раствором серной кислоты. Основной реактив – дихлорид ртути, дополнительный реактив – калия йодид.

Навеску ЛВ предварительно обрабатывают: неорганические – хлористоводородной кислотой разведенной или неорганические - пергидролем.

  1. Реакция Буго-Тиле.

Метод основан на восстановлении соединений мышьяка с фосфорноватистой кислотой в присутствии хлористоводородной кислоты при нагревании до металлического мышьяка. В зависимости от концентрации в исследуемом растворе – бурый осадок или бурое окрашивание. В эталоне – бурое окрашивание. Фосфорноватистая кислота получается при взаимодействии основного реактива – гипофосфита натрия и хлористоводородной кислоты разведенной

9. Методики приготовления эталонных растворов цветности по ГФXIV (исходные растворы, основные растворы), правила работы с эталонными растворами.

Приготовление эталонов

Эталоны готовят из пяти стандартных растворов путем разбавления их 1 % раствором хлористоводородной кислоты.

Отмеривание исходных и стандартных растворов для приготовления шкал производят при помощи калиброванной пипетки или бюретки с точностью до 0,02 мл.

Эталоны для определения степени окраски жидкостей по методу I хранят в ампулах из бесцветного прозрачного нейтрального стекла с наружным диаметром 12 мм, в защищенном от света месте в течение 1 года.

Эталоны, используемые для определения степени окраски жидкостей по методу II, готовят из соответствующих стандартных растворов непосредственно перед использованием.

Количества компонентов для приготовления эталонов цветности приведены в табл. 2-6.

Степень окраски испытуемого раствора не должна превышать степень окраски соответствующего эталона. Цвет испытуемого образца должен быть максимально приближен к цвету соответствующего эталона.

При сравнении окраски испытуемого раствора с эталонами указывают номера эталона и букву шкалы. Например, окраска раствора не должна превышать эталон В7.

При необходимости могут быть использованы другие эталоны, приготовленные путем смешения стандартных растворов разных цветовых шкал с точным указанием их объемов для достижения нужной окраски, приближенной к окраске испытуемого раствора, если это предусмотрено фармакопейной статьей.

Для оценки окраски жидкостей возможно использование спектрофотометрического метода, если это предусмотрено фармакопейной статьей, при этом должны быть указаны: длина волны, при которой наблюдается максимум поглощения в видимой области спектра, толщина кюветы и значение оптической плотности с допустимыми отклонениями.

ОФС.1.2.1.0006.15 Степень окраски жидкостей

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Взамен ОФС 42-0050-07 ГФ XII, ч.1

Окраску жидкостей определяют визуально одним из методов, приведенных ниже, путем сравнения с соответствующими эталонами. В статью включены методы контроля качества лекарственных средств по показателям «цветность» и «цветность раствора». Цветность является условно принятой количественной характеристикой для жидкостей, имеющих незначительную окраску.

Цвет – это восприятие или субъективная реакция наблюдателя на объективный раздражитель в виде энергии, излучаемой в видимой области спектра и охватывающей диапазон длин волн от 400 до 700 нм. Окраска двух растворов совпадает (при определенном источнике света), если их спектры поглощения и отражения идентичны и наблюдатель не замечает разницы между ними.

Ахроматизм или отсутствие окраски означает отсутствие у испытуемого раствора абсорбции в видимой области спектра.

Для визуальной оценки окраски жидкостей в зависимости от интенсивности в области коричневых, желтых и красных цветов используют один из двух методов, описанных в статье.

Бесцветной считается жидкость, если ее окраска не отличается от воды (в случае растворов – от соответствующего растворителя) или она окрашена не более интенсивно, чем эталон В9.

Сравнение степени окраски жидкости с эталонами

(В, BY, Y, GY, R)1-3 обычно проводят по методу 1; в случае использования эталонов В4-9, (BY, Y, GY, R)4-7 применяют метод 2.

Метод 1

Испытания проводят в одинаковых пробирках из бесцветного, прозрачного, нейтрального стекла с внутренним диаметром около 12 мм, используя равные объемы – 2,0 мл испытуемой жидкости и воды, или растворителя, или эталона сравнения, описанного в статье. Сравнивают окраску при рассеянном дневном свете, горизонтально (перпендикулярно оси пробирок) на матово-белом фоне.

Метод 2

Испытания проводят в одинаковых пробирках из бесцветного, прозрачного, нейтрального стекла с внутренним диаметром от 15 до 25 мм, используя равные слои высотой 40 мм испытуемой жидкости и воды, или растворителя, или эталона сравнения, описанного в статье. Сравнивают окраску при рассеянном дневном свете сверху вдоль вертикальной оси пробирок на матово-белом фоне.

10. Методики приготовления эталонных растворов по ГФXIV для определения степени мутности (исходный эталон, основной эталон), правила работы с эталонными растворами.

Приготовление исходного эталона. К 25,0 мл раствора гидразина сульфата прибавляют 25,0 мл раствора гексаметилентетрамина, перемешивают и оставляют на 24 ч.

Исходный эталон стабилен в течение 2 мес при хранении в стеклянной посуде, не имеющей дефектов поверхности (взвесь не должна прилипать к стеклу), с притертой пробкой.

Приготовление основного эталона. 15,0 мл исходного эталона помещают в мерную колбу вместимостью 1 л, доводят объем жидкости водой до метки и перемешивают.

Срок годности основного эталона 24 ч.

Приготовление эталонов сравнения. Отмеренное количество основного эталона, указанное в приведенной ниже таблице, помещают в мерную колбу вместимостью 100 мл, доводят объем жидкости водой до метки и перемешивают.

Таблица 1 ‑ Состав эталонов сравнения

 

Эталоны сравнения

  I II III IV
Основной эталон, мл 5,0 10,0 30,0 50,0
Вода, мл 95,0 90,0 70,0 50,0

Примечание. Перед применением исходный, основной и эталоны сравнения перемешивают и встряхивают в течение 3 мин.

Эталоны сравнения I, II, III и IV должны быть свежеприготовленными.

Для оценки прозрачности и степени мутности жидкостей допускается использование спектрофотометров или специальных приборов типа турбидиметров, нефелометров или эквивалентных, если это предусмотрено фармакопейной статьей. В таком случае в фармакопейной статье должны быть указаны необходимые условия проведения испытания.

Прозрачность и степень мутности жидкостей определяют путем сравнения испытуемой жидкости с растворителем или эталонами визуально или инструментальным методом.

Визуальное испытание проводят в одинаковых пробирках с притертой пробкой из прозрачного бесцветного и нейтрального стекла с внутренним диаметром около 15 мм. Для сравнения берут равные объемы эталона и испытуемой жидкости (5 или 10 мл). Испытание проводят при освещении электрической лампой матового стекла мощностью 40 Вт, расположенной над образцом, просматривая растворы перпендикулярно вертикальной оси пробирок на черном фоне через 5 мин после приготовления эталона.

Испытуемую жидкость считают прозрачной, если она по прозрачности не отличается от воды или растворителя, используемого при приготовлении испытуемой жидкости, или ее опалесценция (мутность) не превышает опалесценцию (мутность) эталона I при просмотре в описанных выше условиях.

Эталонами служат взвеси из гидразина сульфата и гексаметилентетрамина.

Приготовление раствора гидразина сульфата. 0,50 г гидразина сульфата помещают в мерную колбу вместимостью 50 мл, растворяют в 40 мл воды, доводят объем раствора водой до метки и перемешивают. Раствор выдерживают в течение 4 — 6 ч.

Приготовление раствора гексаметилентетрамина. 3,00 г гексаметилентетрамина растворяют в 30,0 мл воды.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Определение азота в ОФС.1.2.3.0011.15
органических соединениях Взамен ГФ XII, ч.1,
методом Къельдаля ОФС 42-0052-07

Метод основан на минерализации лекарственного средства под воздействием серной кислоты концентрированной при нагревании в присутствии катализаторов. В качестве катализаторов возможно использование смеси калия сульфата, меди сульфата и/или селена и/или титана диоксида. При этом азот превращается в аммония сульфат. При прибавлении натрия гидроксида выделяется аммиак, который перегоняют с паром в приемник, содержащий кислоту для его поглощения: борную – в методе прямого титрования (1 и 2); серную или хлористоводородную – в методе обратного титрования (3). В методах 1 и 2 поглощенный аммиак титруют раствором хлористоводородной или серной кислоты, в методе 3 избыток кислоты оттитровывают раствором натрия гидроксида. По результатам титрования рассчитывают содержание азота.

Различают следующие варианты метода:

1) метод Къельдаля,

2) микрометод Къельдаля,

3) метод Къельдаля (обратное титрование).

Прибор для определения азота (рисунок) состоит из парообразователя – круглодонной колбы (1) вместимостью 3 л с предохранительной трубкой (2), сменных колб Къельдаля с длинным горлом (3) для конденсации водяных паров и защиты от потери вещества, воронки (4) с зажимом или краном (5) для прибавления натрия гидроксида, брызгоуловителя (6), прямого холодильника (7) и сменных конических колб-приемников (8). Стеклянная посуда должна быть термостойкой. Работу на приборе осуществляют в вытяжном шкафу.

Вместо описанного прибора могут быть использованы установки для автоматического определения азота по Къельдалю, определение проводят потенциометрически.

Метод Къельдаля

В колбу Къельдаля (3) вместимостью 200 – 300 мл (другие объемы от 50 до 500 мл должны быть указаны в фармакопейной статье) помещают точную навеску (указывают в фармакопейной статье) или точный объем образца лекарственного средства (0,5 – 10,0 мл) с содержанием азота около 14 – 35 мг (если требуется пробоподготовка, она должна быть описана в фармакопейной статье), три стеклянных шарика для пенящихся веществ и 1 г растертой смеси калия сульфата и меди сульфата, взятых в соотношении 10: 1 (другой состав смеси катализаторов должен быть указан в фармакопейной статье). Для трудносжигаемых веществ дополнительно в колбу (3) прибавляют 0,05 г металлического селена и/или 1 мл концентрированного раствора водорода пероксида. Прибавляют 7 мл серной кислоты концентрированной и осторожно вращают колбу для стекания кислоты со стенок и ее перемешивания с содержимым колбы. Постепенно нагревают колбу (3), закрытую стеклянной воронкой, на электронагревательном приборе и далее кипятят содержимое в течение нескольких часов до получения раствора светло-зеленого цвета. На стенках колбы не должно оставаться обугленного вещества. Кипячение продолжают еще 30 мин или более до просветления раствора. Если при кипячении происходит сильное пенообразование, то рекомендуется снять колбу Къельдаля с нагревательного прибора и дать пене осесть, затем снова продолжают нагревание, не допуская попадания пены в горло колбы. После охлаждения колбы Къельдаля в нее осторожно прибавляют 20 мл воды, вращая колбу для перемешивания содержимого, вновь охлаждают и присоединяют колбу к собранному прибору для определения азота (рисунок), заранее промытому путем пропускания через него пара. В парообразователь наливают воду, не менее половины объема, подкисленную 0,5 М или 0,05 М раствором серной кислоты по индикатору метиловому красному (2 – 3 капли) до слабо-розового цвета, для связывания аммиака, который может попасть из воздуха. Для обеспечения равномерного кипения воды в парообразователь помещают стеклянные шарики. В приемник перед началом отгонки наливают 20 мл борной кислоты раствора 4 % и прибавляют 0,25 мл (5 капель) смешанного индикатора. Нижний конец внутренней трубки холодильника должен быть опущен в раствор, находящийся в приемнике. После сборки прибора в холодильник пускают воду и доводят до кипения воду в парообразователе. Затем в колбу (3) из воронки медленно по каплям прибавляют 40 мл натрия гидроксида раствора 30 %, следя за тем, чтобы раствор в колбе (3) энергично перемешивался поступающим паром. Для обеспечения большей герметичности прибора в воронке следует оставлять некоторый избыток натрия гидроксида раствора 30 %. Собирают около 100 мл отгона (или количество, указанное в фармакопейной статье). Во время отгонки колбу Къельдаля нагревают так, чтобы объем жидкости в ней оставался постоянным. По окончании отгонки приемник опускают таким образом, чтобы трубка холодильника находилась над поверхностью жидкости, находящейся в приемнике. Трубку холодильника промывают снаружи водой, продолжая подачу пара в колбу (3) в течение 1 – 2 мин; промывную воду собирают в тот же приемник. После этого прекращают нагревание парообразователя и немедленно отсоединяют колбу Кьельдаля от прибора. По окончании отгонки дистиллят титруют хлористоводородной кислоты раствором 0,1 М или серной кислоты раствором 0,05 М (должно быть указано в фармакопейной статье) до перехода окраски смешанного индикатора из зеленой в красно-фиолетовую.

Проводят контрольный опыт таким же образом и с теми же реактивами, но без испытуемого образца; полученный результат используют для внесения поправки при расчете содержания азота.

1 мл хлористоводородной кислоты раствора 0,1 М или серной кислоты раствора 0,05 М соответствует 1,401 мг азота.

Микрометод Къельдаля

В колбу Къельдаля вместимостью от 50 до 250 мл помещают точную навеску или указанный в фармакопейной статье объем образца лекарственного средства с содержанием азота 1,4 – 3,5 мг. Остальные операции проводят, как указано выше в методе 1, используя описанную ранее смесь катализаторов или (например, в лекарственных средствах, выделенных из природных источников или полученных биотехнологическими методами) 0,25 г смеси калия сульфата, меди сульфата и натрия селената в соотношении 20:5:8,5; в этом случае вместо 7 мл прибавляют 4 мл серной кислоты концентрированной (для лучшего смачивания испытуемого образца).

Минерализацию проводят до тех пор, пока раствор не станет прозрачным. После этого нагревание продолжают еще 30 мин. В конце минерализации прибавляют 1 – 3 капли концентрированного раствора водорода пероксида и продолжают нагревание в течение 10 мин до обесцвечивания раствора.

Титрование выделенного аммиака проводят хлористоводородной кислоты раствором 0,01 М или серной кислоты раствором 0,005 М.

1 мл хлористоводородной кислоты раствора 0,01 М или серной кислоты раствора 0,005 М соответствует 0,1401 мг азота.

Если навеска содержит более чем 3,5 мг азота, допускается использовать хлористоводородной кислоты раствор 0,02 М или серной кислоты раствор 0,01 М (при этом на титрование должно расходоваться не менее 15 мл титранта). Если масса взятой навески безводного вещества превышает 100 мг, необходимо пропорционально увеличивать объемы серной кислоты концентрированной и раствора натрия гидроксида.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Определение хлора и брома

Точную навеску вещества, указанную в фармакопейной статье, сжигают, как описано выше, используя в качестве поглощающей жидкости 20 мл водорода пероксида раствора 6 %. Стенки колбы и держатель образца обмывают 40 мл воды, прибавляют 5 капель бромфенолового синего раствора спиртового 0,1 % и нейтрализуют по каплям натрия гидроксида раствором 0,1 М до перехода желтой окраски в синюю. Затем прибавляют 1 мл азотной кислоты раствора 0,3 %, 5 капель раствора дифенилкарбазона и титруют ртути(II) нитрата раствором 0,005 М до перехода желтой окраски в светло-фиолетовую.

1 мл ртути(II) нитрата раствора 0,005 М соответствует 0,7091 мг хлора или 1,598 мг брома.

Определение йода

Точную навеску вещества, указанную в фармакопейной статье, сжигают, как описано выше, поглощая продукты сжигания 10 мл натрия гидроксида раствора 0,2 М. Шлиф и держатель обмывают 25 мл калия ацетата раствора 10 % в уксусной кислоте ледяной, к которому предварительно прибавляют 15 капель брома, затем пробку с держателем и стенки колбы тщательно промывают 40 мл воды, прибавляют по каплям муравьиную кислоту безводную 85 % до обесцвечивания раствора, 20 мл серной кислоты раствора 0,025 М, 0,5 г калия йодида и выдерживают в темном месте в течение 5 мин. Выделившийся йод титруют натрия тиосульфата раствором 0,1 М (индикатор – крахмал).

1 мл натрия тиосульфата раствора 0,1 М соответствует 12,69 мг йода.

Определение фтора

Определение проводят в соответствии с ОФС «Определение фтора».

Определение серы

Точную навеску вещества, указанную в фармакопейной статье, сжигают, как описано выше, используя в качестве поглощающей жидкости 15 мл водорода пероксида раствора 6 %. Держатель образца и стенки колбы обмывают 20 мл воды и упаривают содержимое колбы до 4 – 5 мл. К охлажденному раствору прибавляют 2 мл уксусной кислоты разведенной 30 %, 20 мл спирта 96 %, по 2 капли водного метиленового синего раствора 0,02 % и торина раствора 0,2 % и титруют бария нитрата раствором 0,01 М до перехода желто-зеленой окраски в розовую.

1 мл бария нитрата раствора 0,01 М соответствует 0,3207 мг серы.

Примечания.

  1. Приготовление бария нитрата раствора 0,01 М. Около 2,614 г (точная навеска) бария нитрата растворяют в воде в мерной колбе вместимостью 1 л, доводят объем раствора водой до метки и фильтруют.

Установка титра. К 10 мл титрованного серной кислоты раствора 0,01 М прибавляют 40 мл воды, прибавляют по 2 капли метиленового синего раствора водного 0,02 % и торина раствора 0,2 % и медленно титруют приготовленным раствором бария нитрата до перехода желтой окраски в розовую.

1 мл серной кислоты раствора 0,01 М соответствует 2,614 мг бария нитрата.

  1. Приготовление торина раствора 0,2 %. 0,2 г торина растворяют в 100 мл воды.

Раствор хранят в защищенном от света месте в течение 7 дней.

Определение фосфора

Точную навеску вещества, указанную в фармакопейной статье, сжигают, как описано выше, используя в качестве поглощающей жидкости 10 мл серной кислоты раствора 0,05 М. Определение фосфора проводят в соответствии с ОФС «Спектрофотометрическое определение фосфора».

 

12. Проблемы, связанные со стабильностью во время хранения лекарственных средств (физические, химические и микробиологические). Привести примеры изменения состава и свойств препаратов при неправильном хранении (не менее 5 примеров)

1. Проблемы, связанные со стабильностью лекарственных средств во время хранения.

Стабильность -- одна из важнейших характеристик лекарственного средства. Предприятие медицинской промышленности должно гарантировать содержание терапевтической дозы JIB в ЛФ в течение определенного срока. Это отражают в ФС или ФСП. Вопросам стабильности ЛС начали уделять внимание уже в те годы, когда налаживалось их первое промышленное производство, Однако подход к этой проблеме был чисто эмпирический.

Повышение стабильности может быть достигнуто на основе исследования механизма химических процессов, происходящих при хранении ЛС, и создания способов ингибирования этих процессов.

Процессы, происходящие при хранении ЛС, могут привести к изменению их химического состава или физических свойств (образованию осадка, изменению окраски или агрегатного состояния). Эти процессы приводят к постепенной потере фармакологической активности или к образованию примесей, изменяющих направленность фармакологического действия.

Из физических факторов наибольшее влияние на стабильность лекарств оказывают температура, свет и влажность. Особенно велика роль температурного режима на стабильность ЛВ. Известно, что с повышением температуры резко возрастает скорость химических реакций. Снижение температуры оказывает различное воздействие на ЛС. Так, ампулированные растворы, содержащие 0,1% адреналина гидрохлорида, 25-40% глюкозы, 25% магния сульфата, 10% кальция хлорида, 5% эфедрина гидрохлорида, сохраняют свои качества при понижении температуры даже до -43°С. В то же время бактерийные и некоторые другие ЛС разлагаются при температуре ниже 0°С, а растворы некоторых антибиотиков (канамицина сульфата, эритромицина и др.) разрушаются в течение нескольких дней при температуре от б до 20°С. Свет также по-разному влияет на ЛВ. Обычно воздействие света ускоряет разложение. Сухие кристаллические вещества более устойчивы к свету, чем растворы. Гигроскопичные вещества после растворения в кристаллизационной воде повышают светочувствительность. Воздействие света усиливается в присутствии катализаторов, которые активизируют химические процессы. Фотокаталитические процессы происходят в кристаллических веществах только в поверхностном слое. При хранении на свету некоторых ЛС, особенно относящихся к фенолам, аминам, сульфаниламидам, происходит изменение окраски, формы кристаллов. Другие на свету сохраняются лучше, чем в темноте. ЛС, содержащие соли железа (И), стабильны и повышают устойчивость к свету других ЛВ...

1 Физические процессы

1.1 Температура

К физико-химическим процессам, происходящие при неправильном хранении лекарственных средств и лекарственных форм, относятся: поглощение и потеря воды; изменение фазового состояния, например плавление, испарение или сублимация, расслаивание, укрупнение частиц дисперсной фазы и др. Так, при хранении легколетучих веществ (раствор аммиака, бромкамфора, йод, йодоформ, эфирные масла) может изменяться содержание лекарственных веществ в лекарственной форме. Из физических факторов наибольшее влияние на стабильность лекарств оказывают температура, свет и влажность.

Особенно велика роль температурного режима на стабильность лекарственных веществ. Известно, что с повышением температуры резко возрастает скорость химических реакций. Даже если принять температурный коэффициент равным 2, то скорость реакции при нагревании реагирующих веществ от 20 до 100°С возрастает в 256 раз. Из этого вытекает необходимость установления оптимальных температурных условий для тех или иных лекарственных препаратов. Вместе с тем зависимость между температурой и скоростью химической реакции лежит в основе методов ускоренного хранения лекарств, используемых для изучения их стабильности. Снижение температуры оказывает различное воздействие на лекарственные вещества. Так, ампулированные растворы, содержащие 0,1% адреналина гидрохлорида, 25 - 40% глюкозы, 25% магния сульфата, 10% кальция хлорида, 5% эфедрина гидрохлорида, 2% новокаина, сохраняют свои качества при понижении температуры даже до -43°С. В то же время бактерийные и некоторые другие препараты разлагаются при температуре ниже 0°, а растворы некоторых антибиотиков (колимицина сульфата, эритромицина и др.) разрушаются в течение нескольких дней при температуре от 6 до 20°С.

1.2 Свет

Свет также по-разному влияет на лекарственные вещества. Обычно воздействие света ускоряет разложение. Сухие кристаллические вещества более устойчивы к свету, чем растворы. Гигроскопичные вещества после плавления в кристаллизационной воде повышают светочувствительность. Воздействие света усиливается в присутствии катализаторов, которые активизируют химические процессы. Фотокаталитические процессы происходят в кристаллических веществах только в поверхностном слое.

При хранении на свету некоторых средств, особенно относящихся к фенолам, аминам, сульфаниламидам, происходит изменение окраски, формы кристаллов. Другие же кристаллы на свету сохраняются лучше, чем в темноте (10% спиртовой раствор йода). Препараты, содержащие соли железа (II), стабильны и повышают устойчивость к свету других лекарственных веществ.

1.3 Влажность

Влажность воздуха - один из факторов, активно снижающих стабильность лекарств. Пониженная влажность воздуха, обычно сопровождающаяся повышением температуры, уменьшает содержание кристаллизационной воды в лекарственных веществах. Это приводит к повышению концентрации препаратов, а также к изменениям физических свойств (формы кристаллов, растворимости и т.д.). Повышенная влажность воздуха влияет на физические свойства гигроскопичных лекарственных веществ, ускоряет такие химические процессы, как гидролиз. В результате могут измениться внешний вид, окраска, концентрация лекарственного вещества. Вследствие этих процессов образуются продукты разложения и снижается фармакологическая активность.

2. Химические процессы

Химические процессы, происходящие при хранении лекарств, сложны и многообразны. Они протекают в виде реакций гидролиза окисления-восстановления, рацемизации, образования высокомолекулярных соединений и тесно связаны с влиянием физических факторов (температуры, света, влажности). Знание механизма и скорости протекания этих процессов дает возможность устранять или замедлять ход химических реакций, а следовательно, повышать стабильность лекарств.

Гидролиз, реакции окисления-восстановления, декарбоксилирования, фотохимическая деструкция, изомеризация - таков далеко не полный перечень химических процессов, которые могут происходить при хранении лекарственных в



Поделиться:


Читайте также:




Последнее изменение этой страницы: 2021-01-14; просмотров: 239; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.196.184 (0.124 с.)