Шум – ключ к квантовым технологиям? 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Шум – ключ к квантовым технологиям?



 

Оказалось, что собрать квантовые устройства крайне сложно, потому что они должны работать в условиях, исключающих шумы. Однако достижение контроля запутанности – в целом задача не из приятных. Столкновения с молекулами воздуха, случайные электромагнитные сигналы, тепло и множество других факторов создают вибрации, или шумы, которые быстро разрушают эту квантовую особенность. Квантовый алгоритм, снижающий шумы, может достаточно долго сохранять запутанность для вычисления точных результатов, но до сих пор не было найдено универсальное решение, использующее больше нескольких кубитов. Маловероятно, что крупномасштабный компьютер, работающий на чистой запутанности, будет построен в следующее десятилетие.

 

А что если бы мы могли создать квантовые устройства, которые допускают шумы – или даже используют их? Это может стать реальным благодаря непонятному свойству квантового мира, называемому квантовым дискордом – актуальный, но неоднозначный инструмент. Дискорд был впервые обнаружен в начале 2000-х годов тремя независимыми группами, работающими в Великобритании, США и Польше. В его основе лежит понимание того, что «квантовое» не означает выбор между «да» и «нет». Система может быть полностью квантовой и потому пересеченной связями запутанности. Но она также может быть и лишь частично квантовой, не имея связей запутанности, но обладая при этом другими квантовыми особенностями. По сути дискорд измеряет эту квантовость, охватывая как запутанность, так и то, что однажды назвали нежелательным шумом. В квантовых системах он встречается повсюду.

В течение семи лет дискорд оставался узкоспециализированной темой и его практическая важность была неочевидна. Однако интерес к нему возрос пять лет назад, когда начали появляться свидетельства того, что он может добавить «квантовой мощи» системе, даже когда запутанность отсутствует. Изначально предполагалось, что запутанность является обязательным условием.

Переломный момент произошел в 2008 году, когда исследователи из Университета Нью-Мексико по-новому взглянули на возможности упрощенной модели квантового компьютера, названной DQC1 (от англ. deterministic quantum computation with one quantum bit – детерминистское квантовое вычисление с одним квантовым битом). Они обнаружили, что по мере увеличения числа кубитов компьютер продолжает работать эффективно, даже если количество данных растет экспоненциально, – что было неосуществимо для цифровых компьютеров. Интересно, что это заметное улучшение было достигнуто без существенного увеличения запутанности. Это наблюдение привело ученых к выводу, что за обеспечение такого эффекта ответственен дискорд. Примечательно, что DQC1 работает только с одним защищенным от шума кубитом, тогда как все остальные полностью зашумлены. Она показывает нам, что большое количество шумов не обязательно является помехой, и использует их как ресурс, когда они комбинируются с частичкой чистого сигнала. Другие недавние исследования показывают, что квантовый компьютер, не производящий никакого дискорда, в большинстве случаев демонстрирует мощность, не превышающую показатели классического компьютера.

Оказывается, дискорд также играет не последнюю роль в работе квантовых датчиков – это один из возможных способов увеличения точности датчиков при меньших затратах энергии. Он может быть использован, например, для анализа хрупких биологических образцов, разрушающихся под воздействием света. Исследование показывает, что в некоторых типах шумных квантовых датчиков, где запутанность не защищена от шума, увеличение квантовой эффективности возможно за счет использования дискорда.

Другим увлекательным открытием стало наличие корреляции между дискордом и точностью квантовых датчиков. Используя компьютер DQC1, квантовые датчики продемонстрировали, что дискорд обеспечивает увеличение квантовыми механизмами точности измерений.

Однако в научных кругах практическая значимость дискорда остается спорным вопросом, и некоторые исследователи скептически относятся к его роли. В основном потому, что потребовалось много лет для достижения ясного понимания дискорда как важной и применимой физической величины. И чем больше для него находится применений, тем более популярным становится такое понимание.

 

Тратя дискорд

 

Одно из самых увлекательных открытий было сделано в 2012 году, когда группа ученых под руководством Майла Гу из Центра квантовых технологий Наньянского технологического университета (Сингапур) и Пинг Коя Лама из Австралийского национального университета в Канберре продемонстрировали убедительную связь между квантовой эффективностью и дискордом. Они показали, что увеличение количества информации о зашифрованном секретном сообщении, которая может быть извлечена с помощью настоящей квантовой машины, эквивалентно затраченному в этом процессе дискорду.

Когда-то смутная перспектива применения дискорда стремительно превращается в ключевое направление исследований, ведь имеются четкие свидетельства того, что шумные квантовые устройства являются следующей ступенью в увеличении эффективности квантовых технологий. Дискорд может сыграть роль даже в нашем понимании перехода между квантовым и классическим, который объясняет возникновение нашего повседневного жизненного опыта в реальном мире, а также в решении других фундаментальных проблем физики. Вполне вероятно, что однажды измерения повышенного квантового характера будут использоваться в самых современных датчиках для исследований геофизики и в других областях.

 

 

Рекордсмены

Квантовая телепортация

Рекорд дальности квантовой телепортации между двумя точками на Земле составил 143 километра. Он был установлен в 2012 году группой исследователей под руководством Антона Цайлингера из Венского университета. Мировой рекорд дальности квантовой телепортации по оптоволоконным сетям был установлен в сентябре 2016 года, когда две независимые группы передали квантовую информацию на расстояние в 6,2 километра.

 

Суперпозиция

Крупнейшим объектом, существовавшим в двух квантовых состояниях одновременно, является облако из 10 000 атомов рубидия.

 

Передача через космос

Первая квантовая передача через космическое пространство была совершена в 2014 году, когда фотоны в четырех разных квантовых состояниях (требуемый минимум для квантовой криптографии) были отправлены в космос и вернулись обратно, отразившись от пяти спутников, находящихся на расстояниях около 2600 километров друг от друга.

 

 

Квантовая биология

 

Мы склонны думать, что взаимодействие квантовой физики и биологии кончается на коте Шрёдингера (хотя Эрвин Шрёдингер не рассчитывал, что его несчастный кот станет чем-то большим, чем просто метафора). В действительности при написании в 1944 году книги «Что такое жизнь» он рассуждал, что живые организмы будут делать все возможное, чтобы воспрепятствовать расплывчатости квантовой физики. Но так ли это на самом деле?

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 99; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.12.240 (0.007 с.)