Корпускулярно-волновой дуализм 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Корпускулярно-волновой дуализм



 

Старейшая и величайшая из квантовых тайн связана с вопросом, волнующим величайшие умы в течение как минимум 2000 лет со времен древнегреческого математика Евклида: «Из чего сделан свет?» На протяжении истории ученые искали ответ на него (см. рис. 1.4).

 

Исаак Ньютон считал, что свет состоит из мельчайших частиц, но эта идея впечатлила не всех его современников. А эрудит Томас Юнг в классических экспериментах, проведенных им в начале 1800-х годов, продемонстрировал, что пучок света при прохождении через две узкие щели дифрагирует, то есть расходится, давая интерференционную картину на экране, расположенном позади щелей, – так, будто свет является волной.

Так что же это – частица или волна? Квантовая теория дала ответ вскоре после того, как появилась на сцене в начале XX века. Свет, впрочем как и все остальное, – это и частица, и волна. Движущаяся одиночная частица, например электрон, может дифрагировать и интерферировать сама с собой, как если бы она была волной, и – хотите верьте, хотите нет – объект размером с автомобиль, когда он едет по дороге, тоже имеет вторичное волновое свойство.

Разоблачение появилось в получившей большой успех докторской диссертации, представленной пионером квантовой физики Луи де Бройлем в 1924 году. Он доказал, что волновым описанием движущихся частиц можно объяснить, почему они обладают дискретными, квантованными уровнями энергии, а не непрерывным распределением, предсказываемым классической физикой. Сперва де Бройль предположил, что такое описание было всего лишь математической абстракцией, но корпускулярно-волновой дуализм кажется слишком реалистичным. Классический эксперимент Юнга по интерференции волн также был воспроизведен с электронами и частицами других типов (см. рис. 2.1).

 

Рис. 2.1. Обновленные варианты классического опыта Юнга с двумя щелями показывают, что частицы похожи на волны еще и в зависимости от того, как их детектировать.

 

Эйнштейн против Бора

Одним из наиболее известных противостояний в науке была вражда между Альбертом Эйнштейном и Нильсом Бором (см. рис. 2.2). С конца 20-х до начала 30-х годов XX века эти ученые боролись за будущее физики. Эйнштейн не мог принять вопиющую случайность и непознаваемость квантовой механики и потому пытался опровергнуть ее, разработав набор оригинальных мысленных экспериментов. Но как только Эйнштейн, по его мнению, приближался к обнаружению противоречий, лежащих в основе квантовой теории, Бор доказывал, что он ошибается. Несмотря на все свои спорные составляющие, квантовая механика одержала победу.

 

Рис. 2.2. Датский физик Нильс Бор.

 

 

Запутанность

 

Согласно идее квантовой запутанности, частицы могут быть связаны таким образом, что изменение квантового состояния одной частицы мгновенно повлияет на другую, даже если их разделяют световые годы. Это «жуткое действие на расстоянии», как говорил Эйнштейн, – серьезный удар по цельности нашего понимания того, как устроен мир. Эрвин Шрёдингер (см. рис. 2.3) назвал это «определяющей особенностью» квантовой теории. Эйнштейн не мог решиться поверить во все это, считая доказанным наличие у квантовой теории серьезных недостатков.

 

Рис. 2.3. Эрвин Шрёдингер.

 

 

Суперпозиция

 

Как бы вы ни старались, вы не сможете находиться в двух местах одновременно. Но если вы – электрон, то появление сразу в нескольких местах – это ваш образ жизни. Законы квантовой механики говорят нам, что субатомные частицы существуют в суперпозиции состояний, пока не будут измерены и обнаружены в одном определенном – когда волновая функция коллапсирует.

Так почему бы нам не проделать коронный номер электрона? Кажется, что, как только объект становится достаточно большим, он теряет свои квантовые свойства – этот процесс известен как декогеренция (см. главу 7). В основном это связано с тем, что более крупные объекты взаимодействуют с окружением, заставляющим занять то или иное положение. Эрвин Шрёдингер отлично продемонстрировал абсурдность суперпозиции на больших масштабах с помощью эксперимента с котом, который и жив, и мертв одновременно и чья судьба зависит от распада радиоактивного атома – случайного квантового процесса.

 

 

Волновое уравнение Шрёдингера

В 1926 году Эрвин Шрёдингер выдвинул идею о том, что все квантовые частицы – от атомов до электронов – можно описать неосязаемыми сущностями, распространяющимися в пространстве подобно ряби на поверхности озера. Он назвал их волновыми функциями, которые четко объяснили, почему у электронов в атомах именно такие значения энергии, а не какие-то другие.

Все волны можно описать математически. Например, распространяющаяся по пруду рябь – это возмущение на воде; ее волновая функция описывает форму ряби в любой точке и в любой момент времени, тогда как нечто, называемое волновым уравнением, предсказывает движение ряби. Из труда де Бройля Шрёдингер понял, что у каждой квантовой системы есть связанная с ней волновая функция, хотя он затруднялся объяснить, что является возмущением в случае атома или электрона. Несмотря на это, работа Шрёдингера привела к радикально новой картине квантового мира как места, где определенности уступают дорогу вероятностям.

Волновая функция Шрёдингера является в этой картине центральным элементом, поскольку в ней закодированы все возможные варианты поведения квантовой системы. Изобразим простой случай атома, летящего в пространстве. Это квантовая частица, так что вы не можете сказать с уверенностью, куда он полетит. Если же вам известна его волновая функция, то с ее помощью можно просчитать вероятность нахождения атома в любом месте, каком вы пожелаете.

 

 

Квантование

 

Макс Планк в 1900 году впервые показал, что с математической точки зрения энергия испускается излучающим телом не непрерывно, а неделимыми порциями. Пять лет спустя Эйнштейн продемонстрировал, что свет состоит из дискретных квантов, подобных частицам, которые он назвал фотонами. И это было только начало. По мере того, как квантовая теория развивалась, становилось ясно, что не только энергия, но и многие другие свойства, например электрический заряд и спин, появляются в единицах минимального размера. Но никто не знает, почему так происходит.

 

Вероятность

 

Вероятности в классической и в квантовой физике – это совершенно разные вещи. В классической физике они представляют собой «субъективные» величины, которые меняются вместе с нашими знаниями. Вероятность того, что, например, подбрасывание монеты приведет к выпадению орла или решки, скачком меняется от 1/2 к 1, когда мы наблюдаем исход. Если бы было существо, знающее положения и импульсы всех частиц, – названное «демоном Лапласа» в честь французского математика Пьер-Симона Лапласа (1749–1827), первым смирившегося с вероятностью, – оно определило бы развитие всех последующих событий в классической Вселенной и для их описания ему бы не понадобилась вероятность.

В квантовой физике, однако, вероятность появляется из подлинной неопределенности относительно устройства мира. Состояния физических систем в квантовой теории представлены в каталогах информации, как назвал их Шрёдингер, но добавление в них информации на одной странице размывает или стирает ее вовсе на другой. Более точные данные о положении частицы делают менее точными данные о том, как, например, она движется. Квантовые вероятности «объективны» в том смысле, что они не могут быть полностью устранены получением большего количества информации.

 

Спин

 

Спин – это понятие, ускользающее от понимания. Данное квантовое свойство многих видов частиц, включая электроны, было впервые предложено в начале 20-х годов XX века австрийским физиком-теоретиком Вольфгангом Паули. Его сила воли была такова, что порождала слухи, будто он заставил опыты окончиться неудачей, просто оказавшись рядом с местом их проведения. Со спином это не понадобилось. Свойство спина становится заметным при наблюдении потока электронов, проходящих сквозь неоднородное магнитное поле. Частицы отклоняются в противоположных направлениях, казалось бы, случайным образом и так, будто у каждой из них есть свое внутреннее вращение, которое каким-то образом «улавливается» магнитным полем, благодаря чему и происходит отклонение от курса.

 

Неопределенность

 

Загадкой, над решением которой Бор и его студент Гейзенберг ломали головы зимой 1926–1927 годов, были следы из капелек, оставляемые электронами при прохождении через пузырьковую камеру – прибор, используемый для слежения за движением заряженных частиц. Попытка Гейзенберга рассчитать эти на первый взгляд четкие траектории с помощью уравнений квантовой механики оказалась неудачной.

Как-то вечером в середине февраля Гейзенберг вышел на прогулку и к нему пришло озарение. Трек электрона был совершенно нечетким: при более близком рассмотрении становилось видно, что он состоял из набора размытых точек. Это выявило нечто фундаментальное в квантовой механике. Гейзенберг увлеченно изложил свою идею в письме коллеге-физику Вольфгангу Паули, а ее основной смысл описал в статье несколько недель спустя: «С чем большей точностью определено положение, тем менее точно в этот момент известен импульс, и наоборот». Так появился на свет знаменитый принцип неопределенности Гейзенберга. Это утверждение о принципиальной непознаваемости квантового мира занимало твердую позицию бóльшую часть века.

Глубокие следствия принципа неопределенности трудно переоценить. Возьмем, например, нашу классическую, работающую как часы Солнечную систему. Имея точные знания о положении и движении ее планет и других тел в данный момент времени, мы можем почти идеально предсказать их точное положение и движение в любой последующий момент времени. В квантовом мире, однако, неопределенность опровергает любые подобные идеи совершенного знания, полученного посредством измерений. Наличие пар «дополняющих друг друга» величин, таких как положение и импульс, где точное знание одной делает невозможным знание другой с любой точностью, также подрывает любую концепцию предсказываемых причинно-следственных связей. Не обладая полными и точными знаниями о настоящем, невозможно прогнозировать будущее.

 

 

Нечеткая логика

В статье 1927 года, представившей миру принцип неопределенности, Вернер Гейзенберг установил, что в квантовом мире имеются пары физических величин, которые нельзя одновременно измерить на произвольном уровне точности.

Одну такую пару образуют положение и импульс, по сути являющиеся мерой движения квантовой частицы. Если вы знаете координату частицы x с определенной погрешностью Δ x, то можете описать неопределенность Δ p ее импульса p математическим неравенством Δ x ∙ Δ p ≥ ħ /2. Здесь ħ — постоянное число природы, известное как приведенная постоянная Планка. Согласно неравенству результат умножения Δ x и Δ p не может быть меньше ħ /2: то есть чем больше мы знаем о том, где частица находится (чем меньше Δ x), тем меньше мы можем знать о том, насколько быстро она движется (тем больше Δ p), и наоборот.

Принцип неопределенности также применяется к другим парам величин, например энергии и времени, а также спинам, или поляризациям, частиц в разных направлениях. Соотношение неопределенностей «энергия-время» является причиной того, почему частицы могут появляться из ничего и исчезать снова. Пока энергия Δ E, которую они для этого берут, и время Δ t, в течение которого они присутствуют, не нарушают связь неопределенностей, нечеткая логика квантовой механики остается соблюденной.

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 145; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.9.115 (0.015 с.)