Непосредственно на верхне-коликеганском месторождении используется реагент Азол 3010 ингибитор отложений сульфатов и карбонатов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Непосредственно на верхне-коликеганском месторождении используется реагент Азол 3010 ингибитор отложений сульфатов и карбонатов.



Реагент Азол 3010 представляет собой композицию аминометиленфосфонатов в водо-метанольном растворе. Азол 3010 предназначен для применения в качестве ингибитора отложений труднорастворимых солей кальция, магния, бария в нефтепромысловом оборудовании при добыче и подготовке нефти, при опреснении морской воды, утилизации высокоминерализованных вод, для ограничения накипеобразования в теплоэнергетических системах, в промышленных охлаждающих системах и в других процессах, где имеется контакт металлической поверхности с водой, содержащей соли. Реагент Азол 3010 действует блокируя активные центры кристаллизации труднорастворимых солей. Азол 3010 эффективно предотвращает образование отложений как карбонатов кальция и магния так и сульфата кальция.

Применение Реагента Азол 3010 осуществляется по методу:

периодическое введение реагента в призабойную зону пласта скважины;

постоянная дозировка в затрубное пространство скважины;

периодическая закачка реагента с устья на рабочее УЭЦН;

введение АЗОЛА в секции УЭЦН перед спуском в скважину;

при ремонте скважины капсулированный ингибитор АЗОЛ вводится через жидкость глушения и спускается с ней на забой в течении 10 часов, в следствии данного метода в составе пластовой жидкости ещё пол года присутствуют следы ингибитора;

продавка в пласт АЗОЛА при проведении кислотной обработки.

При перенасыщении труднорастворимых карбонатов 200 - 250 г./т и сульфатов 550 - 600 г./т, эффективные дозировки реагента Азол 3010 составляют 10 -15 г./т.

А так же на месторождении используется метод профилактической промывки рабочего УЭЦН HCL, при прохождении через ЭЦН кислота растворяет соли.

Причиной выноса мехпримесей является:

1. Обратный вынос проппанта;

.   Неконсолидированный в пласте песок;

.   Подвижные глины.

Методы борьбы с выносом механических примесей:

1). Скважина продолжает добычу жидкости вместе с песком. Допускается вынос определенного количества песка. Экономическое преимущество метода несомненно, т.к. он не требует затрат на капитальный ремонт. Следует однако сравнить возможные затраты за определенный период времени (неизбежные смены насосов) и принять наиболее экономичное решение; 2). Монтаж ЭЦН с пескоотделителем. Пескоотделитель предотвращает попадание абразивных частиц в двигатель ЭЦН и предохраняет его от разрушения. Метод легкий в смысле монтажа и стоимости дополнительного оборудования. Не решает проблему кардинально вследствие забивания пескоотделителя с течением времени. Фирма-изготовитель продолжает работать над совершенствованием отделителей механических примесей; 3). Монтаж насоса - «жертвы». Спуск временного насоса. Как показывает практика, это требует значительного увеличения времени работы бригады на скважине и не гарантирует положительного эффекта; 4). Установка гравийного фильтра в забое скважины. Метод рекомендован как последняя возможность в борьбе с песком вследствие высокой стоимости, а также того, что с течением времени фильтр забивается песком, окалиной, органическими осадками и его проницаемость уменьшается. Следовательно, уменьшается дебит, начинается процесс разрушения призабойной зоны; 5). Сваббирование скважины и создание большой депрессии. Откачивание жидкости на первоначальном этапе с помощью поршня. Метод привлекательный с точки зрения затрат. Время сваббирования трудно прогнозировать; 6). Отработка азотом с использованием комплекса ГНКТ. Основное преимущество этого метода в том, что он может использоваться наряду с уже действующими методами работы на скважине. После промывки забоя азот закачивается через гибкую НКТ на необходимую глубину и в скважине поддерживается депрессия в течение необходимого времени, отработанная жидкость поступает в выкидную линию. Затем проводится окончательная промывка забоя. Продолжительность работ можно прогнозировать. Обеспечивается полный контроль скважины. Сразу после закачивания скважина начинает давать продукцию.

Непосредственно в ОАО «Варьеганнефтегаз» на Верхне-Коликеганском месторождении используется технология отработки ЭЦН в периодическом режиме. Этот метод используется, дабы не допустить попадания на вход в ЭЦН пропанта. Время за которое пластовая жидкость с пропантом достигнет входа в ЭЦН рассчитывается по следующим параметрам: производительность ЭЦН, изменение динамического уровня, глубина спуска ЭЦН.

Процесс заключается в пуске скважины до момента подхода жидкости к входу в ЭЦН, затем скважину отключают и так несколько раз, пока взятые из скважины пробы на мехпримеси не будут в норме, затем скважину переводят на постоянный режим.

Причины образования АСПО:

1) Снижение давления на забое скважины и связанное с этим нарушение гидродинамического равновесия газожидкостной системы;

)   Интенсивное газовыделение;

)   Уменьшение температуры в пласте и стволе скважины;

)   Изменение скорости движения газожидкостной смеси и отдельных ее компонентов;

)   Состав углеводородов в каждой фазе смеси;

)   Соотношение объема фаз;

)   Состояние поверхности труб.

Интенсивность образования АСПО зависит от преобладания одного или нескольких факторов, которые могут изменяться по времени и глубине, поэтому количество и характер отложений не являются постоянными.

Влияние давления на забое и в стволе скважины. В случае, когда забойное давление меньше давления насыщения нефти газом, равновесное состояние системы нарушается, вследствие чего увеличивается объем газовой фазы, а жидкая фаза становится нестабильной. Это приводит к выделению из нее парафинов. Равновесное состояние нарушается в пласте, и выпадение парафина возможно как в пласте, так и в скважине, начиная от забоя.

Предупреждение образования АСПО достигается нанесением защитных покрытий на поверхности труб и другого оборудования из гидрофильных материалов, а также введением в поток добываемой нефти различных ингибиторов.

В настоящее время известно около двадцати различных способов борьбы с отложениями парафина. Каждый из методов борьбы с отложениями парафина требует применения на скважине более или менее сложного оборудования и всевозможных устройств, нуждающихся в повседневном контроле за их работой. Подбор эффективных методов предупреждения и удаления парафиновых отложений обеспечивает продолжительный межремонтный период работы скважин, повышает нефтегазоотдачу и сокращает материальные затраты.

Удаление АСПО достигается путем чистки поверхности труб и оборудования механическими скребками, физическими методами, тепловой и химической обработкой продукции скважин.

Методы борьбы с АСПО:

Механические методы.

Механические методы предполагают удаление уже образовавшихся отложений АСПО на НКТ. Для этой цели разработана целая гамма скребков различной конструкции.

По конструкции и принципу действия скребки подразделяют на:

. Центраторы-депарафинизаторы

. Скребки - центраторы.

. Плавающие скребки.

. «Летающие» скребки.

Физические методы.

Методы, относимые к физическим, основаны на воздействии механических и ультразвуковых колебаний (вибрационные методы), а также электрических, магнитных и электромагнитных полей на добываемую и транспортируемую продукцию.

Вибрационные методы позволяют создавать ультразвуковые колебания в области парафинообразования, которые, воздействуя на кристаллы парафина, вызывают их микроперемещение, что препятствует осаждению парафина на стенках труб.

Воздействие магнитных полей следует отнести к наиболее перспективным физическим методам. Использование в нефтедобыче магнитных устройств для предотвращения АСПО началось в пятидесятые годы прошлого века, но из-за малой эффективности широкого распространения не получило. Отсутствовали магниты, достаточно долго и стабильно работающие в условиях скважины. В последнее время интерес к использованию магнитного поля для воздействия на АСПО значительно возрос, что связано с появлением на рынке широкого ассортимента высокоэнергетических магнитов на основе редкоземельных материалов. В настоящее время около 30 различных организаций предлагает магнитные депарафинизаторы.

Химические методы борьбы.

Химические методы базируются на дозировании в добываемую продукцию химических соединений, уменьшающих, а иногда и полностью предотвращающих образование отложений. В основе действия ингибиторов парафиноотложений лежат адсорбционные процессы, происходящие на границе раздела между жидкой фазой и поверхностью металла трубы.

Химические реагенты подразделяются на смачивающие, модификаторы, депрессаторы и диспергаторы:

Смачивающие реагенты образуют на поверхности металла гидрофильную пленку, препятствующую адгезии кристаллов парафина к трубам, что создает условия для выноса их потоком жидкости. К ним относятся полиакриламид (ПАА), кислые органические фосфаты, силикаты щелочных металлов, водные растворы синтетических полимерных ПАВ.

Модификаторы взаимодействуют с молекулами парафина, препятствуя процессу укрупнения кристаллов. Это способствует поддержанию кристаллов во взвешенном состоянии в процессе их движения. Такими свойствами обладают атактический пропилен с молекулярной массой 2000-3000, - низкомолекулярный полиизобутилен с молекулярной массой 8000-12000, алифатические сополимеры, сополимеры этилена и сложного эфира с двойной связью, тройной сополимер этилена с винилацетатом и винилпиролидоном, полимер с молекулярной массой 2500-3000.

Механизм действия депрессаторов заключается в адсорбции молекул на кристаллах парафина, что затрудняет их способность к агрегации и накоплению. К известным депрессаторам относятся «Парафлоу АзНИИ», алкилфенол ИПХ-9, «Дорад-1А», ВЭО-504 ТюмИИ, «Азолят-7».

Диспергаторы - химические реагенты, обеспечивающие образование тонкодисперсной системы, которая уносится потоком нефти, что препятствует отложению кристаллов парафина на стенках труб. К ним относятся соли металлов, соли высших синтетических жирных кислот, силикатно-сульфанольные растворы, сульфатированный щелочной лигнин [3]. Использование химреагентов для предотвращения образования АСПО во многих случаях совмещается с:

· процессом разрушения устойчивых нефтяных эмульсий;

· защитой нефтепромыслового оборудования от коррозии;

· защитой от солеотложений;

· процессом формирования оптимальных структур газожидкостного потока.

Разработан достаточно широкий ассортимент химических реагентов для борьбы с АСПО. В настоящее время применяются следующие марки реагентов:

· бутилбензольная фракция (бутиленбензол, изопропилбензол, полиалкилбензолы).

· толуольная фракция (толуол, изопентан, н-пентан, изопрен);

· СНПХ-7 р-1 - смесь парафиновых углеводородов нормального и изостроения, а также ароматических углеводородов;

· СНПХ-7 р-2 - углеводородная композиция, состоящая их легкой пиролизной смолы и гексановой фракции;

· ХПП-003, 004, 007;

· МЛ-72 - смесь синтетических ПАВ;

· реагенты типа СНПХ-7200, СНПХ-7400 - сложные смеси оксиалкилированных ПАВ и ароматических углеводородов;

· реагент ИКБ-4, оказывающий комплексное воздействие на АСПО и коррозию металла труб;

· ИНПАР; СЭВА-28.

Кроме перечисленных реагентов в нефтегазодобыче используют также Урал-04/88, ДМ-51; 513; 655; 650, ДВ-02; 03, СД-1; 2, О-1, В-1, ХТ-48, МЛ-80, Прогалит ГМ20/40 и НМ20/40.

Наряду с высокой стоимостью существенным недостатком химического метода является сложность подбора эффективного реагента, связанная с постоянным изменением условий эксплуатации в процессе разработки месторождения.



Поделиться:


Последнее изменение этой страницы: 2020-12-09; просмотров: 305; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.151.141 (0.016 с.)