![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Диодные включения транзисторовСодержание книги
Поиск на нашем сайте
Для создания интегрального диода достаточно сформировать только один p-n- переход. Однако при изготовлении микросхем желательно все элементы формировать в едином технологическом процессе. Поэтому наиболее экономично использовать биполярный транзистор в диодном включении. При этом характеристики диода-транзистора можно изменять, используя тот или иной p-n- переход путем применения одного из шести возможных вариантов включения (рис. 40). Рис. 40. Транзистор в диодном включении Первые два варианта анализируются наиболее просто. Так как один из переходов замкнут, то напряжение на нем равно нулю, т. е. закороченные p-n- переходы не оказывают никакого влияния на вольт-амперные характеристики рабочих p-n- переходов. В вариантах (в) и (г) второй p-n- переход никуда не подключается и влияет на рабочий переход, снижая ток насыщения получающегося диода. Последний вариант (е) получается, если в технологическом процессе формирования транзисторной структуры исключить эмиттерную диффузию. Поскольку остается только один p‑n‑ переход, никакого влияния на него не оказывается, и вольт-амперная характеристика точно такая же, как и при закороченных выводах эмиттер – база. Отмечая особенности рассмотренных вариантов, можно сказать, что наибольший ток пропускает диод варианта (д), наибольшим быстродействием обладает диод варианта (а), а наибольшие пробивные напряжения имеют диоды вариантов (б, г, е).
Вопросы и задания для самоконтроля
1. Опишите физическую сущность (р-n)-перехода. 2. Опишите механизм возникновения диффузионного поля. 3. Прямое напряжение и прямой ток (режим инжекции). Обратное напряжение и обратный ток (режим экстракции зарядов). Вольт-амперная характеристика идеального p-n -перехода. 4. Опишите механизм перераспределения зарядов на основе модели полупроводника с электронной и дырочной электропроводностью. 5. Электронно-дырочный переход, контактная разность потенциалов. 6. Прямое напряжение и прямой ток p-n перехода. 7. Обратное напряжение и обратный ток. Вольт-амперная характеристика идеального p-n перехода. 8. Характеристики реальных германиевого и кремниевого p-n переходов. 9. Особенности прямой и обратной ветвей В.А.Х. 10. Электрический пробой перехода.
11. Выпрямительные диоды. Параметры диодов: I пр.ср.max, U обр.max. 12. Биполярный транзистор. Схема с общей базой. Входные и выходные характеристики. 13. Биполярный транзистор в схеме с общим эмиттером. 14. Характеристики реального p-n- перехода. Особенности прямой и обратной ветвей В.А.Х., отличие от идеального p-n- перехода. 15. Электропроводимость в собственных, n- и p-типах полупроводниковых материалах. 16. Влияние внешних факторов на электропроводимость полупроводников. 17. Контактные явления в полупроводниках (p-n-переход, переход полупроводник - металл). 18. Принцип работы полупроводникового диода и его ВАХ. 19. Методы определения типа электропроводимости полупроводников. 20. Простые полупроводники (германий, кремний): их получение, обработка, свойства. 21. Поляризация диэлектриков и диэлектрическая проницаемость.
ПРОСТЫЕ ПОЛУПРОВОДНИКИ Германий Ge В 1870 г. существование германия и его основные свойства были предсказаны Д.И. Менделеевым в описании элемента эка-силиция. Это предсказание подтвердил в 1886 г. немецкий химик К.Винклер, обнаружив эка-силиций в минеральном сырье и назвав его германием в честь своей родины. В земной коре содержание германия невелико и составляет примерно 0,001%. Германий почти не имеет своих руд. Единственная руда германид содержит меди, железа и цинка гораздо больше, чем германия. В ничтожных количествах (0,01...0,5%) германий содержится в цинковых рудах, угольной пыли, золе, саже и морской воде. Он рассеян в силикатах, сульфидных минералах, а также в минералах, представляющих собой сульфасоли. Большое количество германия (до 100 г/т) содержат бурые сорта угля. Получают германий в результате сложного технологического процесса из продуктов сгорания бурого угля. Окончательным продуктом этого процесса является монокристаллический германий в виде слитков. Технологический процесс получения монокристаллического германия состоит из следующих основных процессов: - получение тетрахлорида германия и его очистка (тетрахлорид германия GeCl4 образуется в процессе хлорирования и солянокислотной обработки исходного сырья); - гидролиз тетрахлорида германия и получение из него двуокиси германия GeO2 (после очистки тетрахлорид германия дальнейшим окислением переводят в двуокись германия, которая представляет собой порошок белого цвета);
- восстановление двуокиси германия водородом (двуокись германия восстанавливают в среде водорода при температуре 650...700°С до элементарного поликристаллического германия в виде порошка серого цвета; поликристаллический порошковый германий получают также непосредственно из тетрахлорида германия GeCl4 методом разложения этого соединения в атмосфере паров цинка при высокой температуре); - получение поликристаллического слитка и его очистка от примесей зонной плавкой. Содержание примесей в поликристаллическом германии велико, поэтому он не пригоден для непосредственного употребления в полупроводниковом производстве; германий с собственной проводимостью должен содержать примесей до 1019 м - выращивание из расплавленного поликристаллического германия слитка монокристалла германия, для получения монокристаллического германия используют метод зонной плавки и вытягивание из расплава. Метод зонной плавки При зонной плавке слиток германия 3 обычно помещают в графитовую лодочку 4, заключенную в кварцевую трубу 7, по которой непрерывно проходит инертный газ (рис. 41). При помощи витка высокочастотного контура 2 получают узкую зону плавления 6, которая медленно перемешается вдоль очищаемого образца, так как виток двигается вместе с каретой 5. Рис. 41. Устройства для зонной плавки (1 – кварцевая трубка, 2 – витки контура высокочастотного генератора, 3 – слиток очищаемого германия, 4 – графитовая лодочка, 5 – каретка, на которой укреплены витки, 6 – зоны плавления) Для ускорения процесса очистки используется не один виток, а несколько, что эквивалентно нескольким последовательным очисткам при одном нагревателе. В германии в небольших концентрациях обычно присутствуют Ni, Ca, Cu, Mn, As, Fe, Si. Большинство примесей обладает большей растворимостью в жидкой фазе германия, чем в твердой, и уносится с расплавленной зоной. Поэтому в результате очистки примеси концентрируются у одного конца слитка, от которого затем отрезается загрязненная часть длиной 20—25 мм. Удельное сопротивление в остальной части слитка после многократного прохождения его расплавленными зонами может быть выше 0.5 Ом×м. Удельное сопротивление германия зависит от концентрации носителей, определяемой степенью очистки. При постепенном опускании штока в расплав медленно вводится монокристаллическая затравка, которая может быть ориентирована в определенном кристаллографическом направлении. Затравка выдерживается в расплаве, пока не оплавится с поверхности. Когда это достигнуто, затравку, вращая, начинают медленно поднимать. За затравкой тянется жидкий столбик расплава, удерживаемый поверхностным натяжением. Попадая в область низких температур над поверхностью тигля, расплав затвердевает, образуя одно целое с затравкой.
|
||||||
Последнее изменение этой страницы: 2020-11-11; просмотров: 280; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.238.81 (0.011 с.) |