Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные параметры масляной системыСодержание книги
Поиск на нашем сайте
По определению масляная система предназначена для осуществления бесперебойной подачи масла к узлам трения двигателя в процессе его работы. При этом уровень температуры и количество прокачиваемого масла должны быть выбраны, исходя из необходимости обеспечения надежности двигателя в течение установленного ресурса и с учетом требования высокого конструктивного совершенства масляной системы, минимизации массы и габаритных размеров ее агрегатов, их элементов крепления и обвязки трубопроводами. Очевидно, что величина потребной прокачки масла будет зависеть от типа ГТД, его конструктивно-силовой схемы и размерности двигателя. При проектировании ГТД расчетным путем определяют ожидаемую величину теплоотвода в масло от узлов трения (подшипников, зубчатых зацеплений и контактных уплотнений валов), от стенок масляных полостей опор, от нагретого воздуха, проникающего через уплотнения масляных полостей опор, и от потерь мощности, затрачиваемой на привод агрегатов масляной системы. Суммарная величина этих составляющих теплоподвода получила название «теплоотдача в масло». Определив ожидаемый уровень теплоотдачи в масло на максимальном режиме назначают в первом приближении потребную величину прокачки масла через двигатель (6.1) где – величина теплоотдачи в масло на максимальном режиме (при Н=0, V=0, САУ); – удельная теплоемкость масла (в первом приближении её величину следует принять при температуре масла 100°С), ; – подогрев масла в двигателе (задают от 40 до 50°С). Во втором приближении с учётом результатов проведенного анализа по выбору рациональной схемы охлаждения масла, исходя из располагаемого хладоресурса топлива (или воздуха) и приемлемой термостабильности намеченных к использованию сортов масла, уточняют потребную величину прокачки масла. При этом, назначив максимально допустимую величину температуры масла на входе в двигатель (), в формуле (6.1) в окончательном расчёте удельную теплоемкость масла принимают для средней температуры масла, равной: . В отраслевом стандарте [13] оговорены предельные отклонения относительно заданной нормы прокачек масла. Они представлены в табл.6.1. Вышеназванные параметры масляной системы являются исходными для проектирования и разработки конструкции ее агрегатов, осуществляющих циркуляцию и непрерывное кондиционирование масла. А после выбора геометрических размеров гидравлической системы распределения масла по узлам опор двигателя определяют потребный уровень давления масла на входе в двигатель. По статистике он находится в диапазоне от 0,3 до 0,6 МПа. При этом следует отметить, что на распределение масла по узлам двигателя оказывают влияния уровни давлений в масляных полостях опор (они могут отличаться в пределах 0,2 МПа), гидравлическое сопротивление соответствующих коммуникаций и пропускная способность масляных форсунок. Кроме вышеперечисленных параметров масляной системы, есть еще один параметр, который без преувеличения можно назвать важнейшим с точки зрения схемно-конструктивного совершенства данной системы. Этот параметр, представляющий установленную норму безвозвратных потерь масла в ГТД, получил название «часовой расход масла». Таблица 6.1
Одной из важных задач, требующих решения в процессе создания двигателя, является обеспечение заявленной величины часового расхода масла. При этом данная задача относится к разряду весьма сложных, так как величина часового расхода масла зависит от очень многих факторов. Прежде всего, на уровне часового расхода сказываются возможные утечки масла из элементов, входящих в состав циркуляционного контура масляной системы. Причём, эти утечки могут быть внешними (относительно узлов двигателя) или внутренними. К разряду внешних утечек относят: - негерметичность в соединениях трубопроводов, связывающих агрегаты масляной системы между собой или с соответствующими узлами двигателя; - негерметичность уплотнительных элементов в корпусных деталях агрегатов (прокладок, резиновых колец и т.п.); - выброс масла через предохранительный клапан маслобака (в случае нерасчётного повышения давления в нём). Такого рода утечки легко можно обнаружить по замасливанию поверхности двигателя при осмотре его состояния. Внутренние утечки масла происходят в случае нарушения работоспособности подвижных уплотнений валов в масляных полостях опор ротора. Следует подчеркнуть, что такие утечки вообще недопустимы, так как они могут вызвать опасные последствия: при попадании масла в воздушный тракт компрессора будет происходить загрязнение воздуха, отбираемого в систему кондиционирования летательного аппарата, а при попадании масла в газовый тракт турбины неизбежно его загорание, что может привести к разрушению данного узла. Такого рода утечки квалифицируют как дефект в работе двигателя. И без его устранения двигатель в соответствии с требованиями [16] не может быть сертифицирован. Как показывает практика, основной расход масла происходит по системе суфлирования масляных полостей ГТД. При этом следует отметить два принципиальных момента. Во-первых, часовой расход масла зависит от выбора схемы системы суфлирования масляных полостей двигателя, от конструктивного совершенства центробежного суфлёра (прежде всего от сепарирующей способности его рабочего колеса), от расхода воздуха, поступающего в систему суфлирования, и от концентрации масла, распылённого в этом воздухе. А во- вторых, следует иметь в виду, что через суфлёр свободно уходят пары масла, которые могут образовываться в масляной полости турбины при контакте масла с наиболее нагретыми её элементами (с корпусными деталями опоры, с трубами суфлирования при неэффективной их тепловой защите и т.п.). Следует также отметить, что часовой расход масла может на порядок превысить его заявленную величину в случае, если произойдёт загорание масла внутри масляной полости опоры турбины, и далее этот процесс будет иметь устойчивый характер. Поэтому при проектировании масляной полости опоры турбины должны быть предусмотрены конструктивные меры, исключающие возможность самовоспламенения масла и стабилизации процесса его горения. Таким образом, очевидно, что при проектировании ГТД необходимо уделять особое внимание обеспечению минимально возможной величины часового расхода масла. Отраслевым стандартом [13] предусмотрено дифференцированное ограничение максимально допустимой величины часового расхода масла в двигателе в зависимости от его размерности и назначения (см. табл.6.2).
Допустимые величины расхода масла в ГТД Таблица 6.2
При стендовых испытаниях ГТД время его непрерывной работы на максимальном режиме ограничивают продолжительностью от 1 до 3 минут. В связи с этим на данном режиме проконтролировать уровень вышеперечисленных параметров масляной системы не представляется возможным. Поэтому в основных данных двигателя указывают величину прокачки масла и теплоотдачи в масло для номинального режима, на котором при более продолжительной работе (не менее 5 минут) параметры масляной системы стабилизируются, что позволяет произвести достоверное измерение контролируемых параметров Следует отметить, что измерение величины безвозвратных потерь масла (кг/ч) производят с учётом израсходованного из маслобака количества масла за фиксированное время работы двигателя. Погрешность.такой оценки зависит в основном от точности измерения объёма масла в маслобаке. Для измерения величины прокачки масла в конструкции двигателя предусматривают специальные переходники, позволяющие при проведении испытаний перед поступлением масла в двигатель направлять его поток по байпасному каналу в стендовую систему, содержащую стандартный расходомер с соответствующим диапазоном измерения. Ниже в качестве примера приведены основные технические данные масляной системы двигателя НК-86: - температура масла на входе в двигатель, не более 100 оС; - давление масла на входе в двигатель: на максимальном режиме 0,4-0,05 МПа; на режиме «малый газ», не менее 0,23 МПа; - расход масла, не более 1 кг/ч; - прокачка масла через двигатель от 0,9 до 1,2 кг/с; - теплоотдача в масло, не более 70 кВт; В процессе доводки ГТД (и даже в его серийном производстве) иногда возникает необходимость внесения корректив в величины вышеперечисленных параметров, характеризующих функционирование масляной системы.
|
||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2020-10-24; просмотров: 222; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.99.18 (0.009 с.) |