Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные направления развития современной микробиологии. Методы микробиологических исследований. Чистые культуры прокариот. Основные параметры и закономерности роста культур.Содержание книги
Поиск на нашем сайте
Как общая М., так и её специальные разделы развиваются исключительно бурно. Существуют три основных причины такого развития. Во-первых, благодаря успехам физики, химии и техники М. получила большое число новых методов исследования. Во-вторых, начиная с 40-х гг. 20 в. резко возросло практическое применение микроорганизмов. В-третьих, микроорганизмы стали использовать для решения важнейших биологических проблем, таких, как наследственность и изменчивость, биосинтез органических соединений, регуляция обмена веществ и др. Для получения бесклеточных ферментных систем и фракций, содержащих определённые внутриклеточные структуры, применяют аппараты, разрушающие клетки микроорганизмов, а также градиентное центрифугирование, позволяющее получать частицы клеток, обладающие различной массой. Для исследования морфологии и цитологии микроорганизмов разработаны новые виды микроскопической техники. Для изучения обмена веществ и химического состава микроорганизмов получили распространение различные способы хроматографии, масс-спектрометрия, метод изотопных индикаторов, электрофорез и др. физические и физико-химические методы. Для обнаружения органических соединений применяют также чистые препараты ферментов. Предложены новые способы выделения и химической очистки продуктов жизнедеятельности микроорганизмов (адсорбция и хроматография на ионообменных смолах, а также иммунохимические методы, основанные на специфической адсорбции определённого продукта, например фермента, антителами животного, образовавшимися у него после введения этого вещества). Сочетание цитологических и биохимических методов исследования привело к возникновению функциональной морфологии микроорганизмов. С помощью электронного микроскопа стало возможным изучение тонких особенностей строения цитоплазматических мембран и рибосом, их состава и функций (например, роль цитоплазматических мембран в процессах транспорта различных веществ или участие рибосом в биосинтезе белка). Лаборатории обогатились ферментерами различной ёмкости и конструкции. Широкое распространение получило непрерывное культивирование микроорганизмов, основанное на постоянном притоке свежей питательной среды и оттоке жидкой культуры. Методы микробиологических исследований. Микроскопия— изучение объектов с использованием микроскопа. Подразделяется на несколько видов: оптическая микроскопия, электронная микроскопия, многофотонная микроскопия, рентгеновская микроскопия, рентгеновская лазерная микроскопия и предназначается для наблюдения и регистрации увеличенных изображений образца. Методы выделения чистых культур м/организмов основаны на изоляции одной микробной клетки от массы м/организмов и последующем выращивании потомства этой клетки на питательных средах изолированно от других видов. Наиболее распространенным способом выделения чистых культур является посев смеси микробов на плотные питательные смеси с целью получения отдельных колоний культур, которые считают результатом развития одной клетки. Для посева чаще используют агаризованные среды в чашках Петри. Основной задачей метода является разведении концентрации м/организмов в исследуемом материале с таким расчетом, чтобы при посеве его на питательную среду выросли изолированные колонии. Культивирование (ферментация) - это процесс, во время которого микроорганизмы растут (увеличивают свою численность) и превращают компоненты питательной среды в целевой продукт. В качестве микроорганизмов могут использоваться дрожжи, грибы или бактерии. В том случае, когда в качестве организмов-продуцентов используются клетки животных или гибридомы, говорят о культуре клеток. Одно из требований к процессу культивирования состоит в обеспечении микроорганизмов или культуры клеток условиями, благоприятными для их оптимального роста и образования продукта. Это требование реализуется с помощью биореактора (ферментера). Чистая культура-совокупность микробов одного вида или варианта, полученная из одного образца материала и содержащаяся в определенном объеме среды (напр., в пробирке). Ч.к. из колонии обладает высокой однородностью св-в, поскольку она обычно происходит из одной особи. Ч.к., полученная путем селективной обработки материала, содержащего смесь микробов, менее однородна. Под ростом бактерий понимают увеличение массы клеток без изменения их числа в популяции как результат скоординированного воспроизведения всех клеточных компонентов и структур. Увеличение числа клеток в популяции микроорганизмов обозначают термином «размножение». Оно характеризуется временем генерации (интервал времени, за который число клеток удваивается) и таким понятием, как концентрация бактерий (число клеток в 1 мл). При внесении бактерий в питательную среду они обычно растут до тех пор, пока содержание какого-нибудь из необходимых им компонентов среды не достигнет минимума, после чего рост прекращается. Если на протяжении этого времени не добавлять питательных веществ и не удалять конечных продуктов обмена, то получим так называемую периодическую культуру (популяцию клеток в ограниченном жизненном пространстве). При изучении процесса размножения бактерий необходимо учитывать, что бактерии всегда существуют в виде более или менее многочисленных популяций, и развитие бактериальной популяции в жидкой питательной среде в периодической культуре можно рассматривать как замкнутую систему. Зависимость концентрации жизнеспособных клеток при периодическом культивировании от длительности инкубирования описывается характерной кривой, которая имеет S-образную форму (рис. 1). На кривой можно различить несколько фаз роста, сменяющих друг друга в определенной последовательности: лаг-фазу; логарифмическую фазу; стационарную фазу; фазу отмирания. • 1-я — начальная— характеризуется началом интенсивного роста клеток, но скорость их деления остается невысокой; • 2-я — логарифмическая— характеризуется постоянной максимальной скоростью деления клеток и значительным увеличением числа клеток в популяции; • 3-я — стационарная фаза — наступает тогда, когда число клеток в популяции перестает увеличиваться. Это связано с тем, что наступает равновесие между числом вновь образующихся и гибнущих клеток. • 4-я — фаза отмирания — характеризуется преобладанием в популяции числа погибших клеток и прогрессивным снижением числа жизнеспособных клеток популяции. Прекращение роста численности (размножения) популяции микроорганизмов наступает в связи с истощением питательной среды и/или накоплением в ней продуктов метаболизма микробных клеток. В условиях сбалансированного роста легко определить величину скорости роста бактериальной популяции в каждый момент времени, если измерить прирост любого компонента клетки по отношению к его исходному количеству. Таким образом, в культуре, растущей сбалансированно, скорость прироста вещества клеток в любой данный момент пропорциональна числу или массе имеющихся в это время бактерий. Коэффициент пропорциональности называют удельной скоростью роста (µ). Данная величина отличается для разных культур. Даже для одной куль- туры в зависимости от условий выращивания она меняется. Удельную скорость роста можно рассчитать по следующим формулам:
и ; где N – число клеток в единице объема; Х – масса клеток в единице объема; t – время. Зная удельную скорость роста, можно определить время генерации (g – время, необходимое для удвоения числа клеток популяции в часах или минутах): . Масса клеток, образованная на единицу использованного компонента среды, представляет собой величину, которую называют экономическим коэффициентом (или выходом биомассы).
|
||||
Последнее изменение этой страницы: 2020-11-11; просмотров: 286; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.243.187 (0.01 с.) |