Физико-химические процессы, происходящие с пищевыми веществами при технологической обработке продуктов, их роль в формировании качества продукции 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Физико-химические процессы, происходящие с пищевыми веществами при технологической обработке продуктов, их роль в формировании качества продукции



Кулинарная обработка, особенно тепловая, вызывает в продуктах глубокие физико-химические изменения. Эти изменения могут приводить к потерям питательных веществ, существенно влиять на усвояемость и пищевую ценность продуктов, изменять их цвет, приводить к образованию новых вкусовых и ароматических веществ.

. Физико-химические процессы, происходящие при механической обработке.

Механическая обработка - обработка пищевых продуктов механическими способами с целью изготовления блюд, кулинарных изделий, полуфабрикатов.

Структурно-механические свойства соединительной ткани зависят от соотношения в ней коллагеновых и эластиновых волокон, от их толщины и расположения.

Коллагеновые волокна имеют сложное строение. Основой каждого волокна являются три полипептидные цепи, закрученные в виде спиралей. Эти цепи состоят из трех аминокислот (глицина, пролина и оксипролина). Коллаген нерастворим в воде, его волокна очень прочны.

Эластиновые волокна бесструктурные, способны растягиваться в длину. При тепловой обработке они очень устойчивы.

Внутренняя соединительная ткань (эндомизий) во всех частях туши имеет простое строение, в ней преобладают тонкие коллагеновые волокна, расположенные параллельными пучками.

Промежуточная соединительная ткань (перемизий), содержащая пучки мышечных волокон высшего порядка, имеет неодинаковое строение в разных частях туши. В мышцах, которые несли при жизни большую нагрузку, перемизий имеет сложное строение, в нем больше эластиновых волокон, коллагеновые волокна толще, образуют сложные хаотические переплетения. Такие ткани более устойчивы при тепловой обработке. В тех мышцах, нагрузка на которые при жизни была меньше, премизий имеет более простое строение, менее устойчивы при тепловой обработке.

Свойства соединительной ткани определяют кулинарное назначение частей туши и обуславливают ее деление на отруба.

Обработка мяса.

На предприятия общественного питания, работающие на сырье, поступает мясо охлажденное (с температурой в толще туш и костей от 0 до 4°С) и мороженое (с температурой в толще не выше - 6°С).

Прием и хранение сырья. При поступлении мяса проверяют его доброкачественность, наличие ветеринарной и товароведной маркировки. Мясо хранят в подвешенном состоянии.

Размораживание. Цель размораживания - максимальное восстановление первоначальных свойств мяса. Размораживание может быть медленное и быстрое.

Потери мясного сока и снижение массы мяса при медленном размораживании в воздушной среде составляет от 0,5 до 3%, при быстром - до 12%. Мясной сок содержит: воды - около 88%, белков - 8, экстрактивных и минеральных веществ - около 3 и витаминов группы В - до 12% общего содержания их в мясе.

Обмывание и обсушивание. Для уменьшения бактериального загрязнения и удаления механических загрязнений туши обмывают. Обмывание теплой водой (20 - 30°С) снижает поверхностное микробное обсеменение на 95 - 99%. Обмытые туши для охлаждения промывают холодной водой (температура 12-15°С). Затем их обсушивают и разделывают.

Деление на части. Обсушенные туши делят на части (отрубы) в зависимости от свойств мышечной и соединительной тканей (пригодные для жарки, варки, тушения, приготовления мясной рубки и т.д.) и от особенностей анатомического строения.

Обвалка. Отдельные части туши подвергают полной или частичной обвалке (удаление трубчатых, тазовых, лопаточных костей и т.д.).

Жиловка и зачистка. После обвалки производится жиловка - удаление грубых пленок и сухожилий и зачистка - обравнивание кусков полученного мяса.

Строение растительной клетки.

В состав рассматриваемых блюд входит большое количество овощей, свойства которых также меняются при механической и тепловой обработке.

Ткань овощей и плодов состоит из тонкостенных клеток, разрастающихся примерно одинаково во всех направлениях, ее называют паренхимной. Содержимое отдельных клеток представляет собой полужидкую массу - цитоплазму, в которую погружены различные клеточные элементы - вакуоли, ядра, пластиды и др. Вакуоль расположена в центре клетки и является самым крупным элементом. Она представляет собой своеобразный пузырек, заполненный жидкостью, в которой растворены питательные вещества, - клеточным соком. Тонкий слой цитоплазмы с другими органеллами занимает в клетке пристенное положение. Все органеллы клетки отделены от цитоплазмы мембранами. Вакуоли окружены простой (элементарной) мембраной, называемой тонопластом. Поверхность ядер, пластид и других цитоплазматических структур покрыта двойной мембраной, состоящей из двух рядов простых мембран с промежутком между ними, заполненным жидкостью типа сыворотки. Цитоплазма на границе с клеточной оболочкой покрыта, как и вакуоль, простой мембраной, называемой плазмалеммой. Вследствие разницы между осмотическим давлением внутри клетки и вне ее происходит переход воды из клетки в окружающую среду, вызывающий плазмолиз - отделение цитоплазмы от клеточной оболочки. Мембраны регулируют клеточную проницаемость, избирательно задерживая либо пропуская молекулы и ионы тех или иных веществ в клетку и за ее пределы, а также препятствуют также смешиванию содержимого двух соседних органелл. Отдельные вещества переходят из одних органелл в другие лишь в строго определенных количествах, необходимых для протекания физиологических процессов в тканях.

Каждая клетка покрыта оболочкой, представляющей собой первичную клеточную стенку. В отличие от мембран она характеризуется полной проницаемостью. Контакт между содержимым клеток осуществляется через плазмодесмы, которые представляют собой тонкие протоплазматические тяжи, проходящие через оболочки.

Поверхность отдельных овощей и плодов покрыта покровной тканью - эпидермисом (плоды, наземные овощи) или перидермой (картофель, свекла, репа). Покровные ткани обычно имеют пониженную пищевую ценность, и при переработке большинства овощей и некоторых плодов их удаляют.

Свежие овощи отличаются значительным содержанием воды (от 75 до 95%), поэтому все структурные элементы их паренхимной ткани в той или иной степени гидратированы. Способность тканей овощей и плодов сохранять форму и определенную структуру при относительно высоком содержании воды объясняется присутствием в них белков и углеводов, способных удерживать значительное количество влаги. Это обеспечивает достаточно высокое тургорное давление в тканях. Тургорное давление может снижаться, например, при увядании или подсыхании овощей или возрастать, что наблюдается при погружении их в воду. Это свойство овощей и плодов учитывают при их кулинарной переработке. Так, картофель и корнеплоды с ослабленным тургором перед механической очисткой замачивают с целью сокращения времени обработки и снижения количества отходов.

Обработка овощей

Она состоит из следующих операций: приемки, кратковременного хранения, сортировки, мойки, очистки, промывания и нарезки.

При приемке проверяют массу партии и соответствие овощей требованиям стандартов. Овощи взвешивают и полученные результаты сверяют с данными, указанными в сопроводительных документах. Доброкачественность овощей определяют органолептически: по цвету, запаху, вкусу и консистенции. От качества овощей зависят качество и безопасность готовой продукции, количество отходов, способ обработки. При сортировке удаляют загнившие, побитые или проросшие экземпляры, посторонние примеси, а также распределяют овощи по размерам, степени зрелости и пригодности их для приготовления определенных блюд и кулинарных изделий. Цель мойки - удаление земли и других загрязнений, уменьшение обсемененности микроорганизмами. Моют овощи в овощемоечных машинах или вручную. При очистке овощей удаляют части с пониженной пищевой ценностью (кожуру, плодоножки, грубые семена и др.) Очищенные овощи ополаскивают и нарезают. Цель нарезки - придание овощам необходимых формы и размеров.

Обработка корнеплодов. К этой группе овощей относятся морковь, свекла, брюква, редис и так называемые белые коренья - петрушка, сельдерей, пастернак. Корнеплоды сортируют по размерам, удаляя загнившие экземпляры. У молодой морковки и свеклы срезают ботву. Моют корнеплоды вручную или в моечных машинах, очищают и снова промывают.

Белые коренья сортируют, затем обрезают зелень и мелкие корешки, после чего промывают и очищают в ручную. Зелень прибирают, удаляют испорченные, пожелтевшие, вялые листья и моют. Очистки ароматических кореньев, тщательно промытые, используют для ароматизации бульонов.

Хранят очищенные корнеплоды на противнях или лотках покрытыми влажной тканью.

. Физико-химические процессы, происходящие при тепловой обработке

Тепловая обработка - обработка пищевых продуктов, заключающаяся в их нагреве с целью доведения до заданной степени готовности.

Тепловая денатурация мышечных белков начинается при 30 - 350 С. При 65 0С денатурирует около 90% всех мышечных белков, но даже при 100 0С часть их остается растворимыми. Наиболее лабилен основной мышечный белок - миозин. При температуре выше 40 0С он практически полностью денатурирует.

Миоглобин, придающий сырому мясу красный цвет, при денатурации подвергается деструкции. Денатурация миоглобина сопровождается окислением ионов двухвалентного железа, входящего в активную группу молекулы этого белка (гем), до трехвалентного. При этом исчезает красная окраска мяса, образуется гемин серо - коричневого цвета. Полная денатурация миоглобина наступает при 80 0С. Поэтому по изменению окраски мяса можно судить о степени его прогрева.

Так, при температуре 60 0С окраска говядины ярко-красная, свыше 60 - 70 0С - розовая, при 70 - 80 0С и выше - серовато-коричневая, свойственная мясу, доведенному до кулинарной готовности.

Сохранение розовой окраски мяса, подвергнутого тепловой обработке, в любом случае говорит о санитарном неблагополучии.

Белки саркоплазмы, представляющие собой концентрированный золь, в результате денатурации и последующего свертывания образуют сплошной гель.

Белки миофибрилл (уже находящиеся в состоянии геля) при нагревании уплотняются с выделением влаги вместе с растворенными в ней веществами. Диаметр мышечных волокон при варке уменьшается на 36 - 42%. Чем выше температура нагрева, тем интенсивнее уплотнение волокон, больше потери массы и растворимых веществ.

Содержащиеся в мясе витамины относительно хорошо сохраняются при тепловой обработке. Наиболее устойчивыми являются витамины В2 (рибофлавин) и PР (никотиновая кислота), содержание которых в вареном и припущенном мясе составляет 80-85%. Витамин B1 (тиамин) сохраняется в пределах 68-75%. Витамин В6 (пиродоксин) менее устойчив, в вареном мясе его сохраняется 60%. В процессе варки от 30 до 65% водорастворимых витаминов переходит в варочную среду.

В формировании вкуса и аромата готовых кулинарных изделий из мяса принимают участие практически все экстрактивные вещества, продукты глубокого расщепления его составных частей, липиды (жиры). Прежде всего специфический мясной вкус бульонов и мясного сока, выделяющегося при жарке, обусловлен аминокислотами (АК), содержащимися в мясе. Всего обнаружено 17-18 свободных АК. Из них сладковатый вкус имеют: серин, глицин, триптофан, аланин, а горьковатый - тирозин, лейцин, валин. Особенно велика роль в формировании вкуса мяса глютаминовой кислоты, она в концентрации 0,03% дает ощущение мясного вкуса. Молочная и фосфорная кислоты дают ощущение кислого вкуса, а креатинин - горького. Все эти и другие вещества в сочетании формируют специфический мясной вкус. Еще более сложен состав летучих веществ, образующихся при тепловой обработке мяса, особенно при жарке.

Размягчение овощей при тепловой обработке.

Оболочки клеток и срединные пластинки придают овощам механическую прочность. В состав клеточных стенок входят: клетчатка (целлюлоза), полуклетчатка (гемицеллюлозы), протопектин, пектин и соединительнотканный белок экстенсин. При этом в средних пластинках преобладает протопектин. При тепловой обработке клетчатка практически не изменяется. Волокна гемицеллюлоз набухают, но сохраняются. Размягчение ткани обусловлено распадом протопектина и экстенсина.

Протопектин - полимер пектина - имеет сложную разветвленную структуру. Главные цепи его молекул состоят из остатков галактуроновых и полигалактуроновых кислот и сахара - рамнозы. Цепи галактуроновых кислот соединены друг с другом с помощью различных связей (водородных, эфирных, ангидридных, солевых мостиков), среди которых преобладают солевые мостики из двухвалентных ионов кальция и магния. При нагревании в срединных пластинках происходит ионообменная реакция: ионы кальция и магния заменяются одновалентными ионами натрия и калия. При этом связь между отдельными цепями галактуроновых кислот разрушается. Протопектин распадается, образуется растворимый в воде пектин, и овощная ткань размягчается. Реакция эта обратима. Чтобы она проходила, в правую сторону, необходимо удалять ионы кальция из сферы реакции. В растительных продуктах содержатся фитин и ряд других веществ, связывающих кальций. Однако связывание ионов кальция (магния) не происходит в кислой среде, поэтому размягчение овощей замедляется. В жесткой воде, содержащей ионы кальция и магния, этот процесс также будет проходить медленно. При повышении температуры размягчение овощей ускоряется.

В разных овощах скорость распада протопектина неодинакова. Поэтому варить можно все овощи, а жарить только те, в которых протопектин успевает превратиться в пектин, пока еще не вся влага испарилась (картофель, кабачки, помидоры, тыкву). У моркови, репы, брюквы и некоторых других овощей протопектин настолько устойчив, что они начинают подгорать раньше, чем достигнут кулинарной готовности.

Размягчение овощей связано не только с распадом протопектина, но и с гидролизом экстенсина. Содержание его при тепловой обработке овощей значительно снижается. Так, по достижении кулинарной готовности в свекле распадается около 70% экстенсина, в петрушке - примерно 40%.

Изменение сахаров

При варке овощей (морковь, свекла и др.) часть сахаров (ди - и моносахаридов) переходит в отвар. При жарке овощей, подпекании лука, моркови для бульонов происходит карамелизация содержащихся в них сахаров, в результате чего количество сахара в овощах уменьшается, а на поверхности появляется румяная корочка. В образовании поджаристой корочки на овощах важную роль играет также реакция меланоидинообразования, сопровождающаяся появлением темноокрашенных соединений - меланоидинов. [5]

Изменение окраски овощей при тепловой обработке

Различную окраску овощей обусловливают пигменты (красящие вещества). При тепловой обработке окраска многих овощей изменяется.

Овощи с белой окраской (картофель, лук репчатый и др.) при тепловой обработке приобретают желтоватый оттенок. Это объясняется тем, что в них содержатся фенольные соединения - флавоноиды, которые образуют с сахарами гликозиды. При тепловой обработке гликозиды гидролизуются с выделением агликона, имеющего желтую окраску.

Оранжевая и красная окраска овощей обусловлена присутствием пигментов каротиноидов: каротинов - в моркови, редисе; ликопинов - в томатах. Каротиноиды устойчивы при тепловой обработке. Они не растворимы в воде, но хорошо растворимы в жирах, на этом основан процесс извлечения их жиром при пассеровании моркови, томатов.

Изменение витаминной активности в овощах

В процессе тепловой обработки витамины претерпевают значительные изменения.

Витамин С. Овощи являются основным источником витамина С в питании человека. Он хорошо растворим в воде и очень неустойчив при тепловой обработке. Содержится в клетках овощей в трех формах: восстановленной (аскорбиновая кислота), окисленной (дегидроаскорбиновая кислота) и связанной (аскорбиген). Восстановленная и окисленная формы витамина С могут легко переходить одна в другую под действием ферментов (аскорбиназы - в окисленную форму, аскорбинредуктазы - в восстановленную форму). Дегидроаскорбиновая кислота по биологической ценности не уступает аскорбиновой, но гораздо легче разрушается при тепловой обработке. Поэтому при кулинарной обработке стараются инактивировать аскорбиназу, в частности, погружением овощей в кипящую воду.

Окисление витамина С происходит в присутствии кислорода. Интенсивность процесса зависит от температуры нагрева овощей и продолжительности тепловой обработки. Для уменьшения контакта с кислородом овощи варят при закрытой крышке (кроме овощей с зеленой окраской), объем емкости должен соответствовать массе отвариваемых овощей, в случае выкипания нельзя доливать холодную некипяченую воду. Чем быстрее прогреваются овощи при варке, тем меньше разрушается аскорбиновая кислота. Так, при погружении картофеля в холодную воду (при варке) разрушается 35% витамина С, в горячую лишь 7%. Чем длительнее нагрев, тем выше степень окисления витамина С. Поэтому не допускается переваривание продуктов, длительное хранение пищи, нежелателен повторный разогрев готовых блюд.

Ионы металлов, попадающие в варочную среду с водопроводной водой и со стенок посуды, являются катализаторами окисления витамина С. Наибольшим каталитическим действием обладают ионы меди. В кислой среде это действие проявляется в меньшей степени, поэтому нельзя добавлять соду для ускорения развариваемости овощей.

Некоторые вещества, содержащиеся в пищевых продуктах, переходят в отвар и оказывают стабилизирующее действие на витамин С. К таким веществам относятся белки, аминокислоты, крахмал, витамины - А, Е, В, пигменты - флавоны, антоцианы, каротиноиды. Например, при варке картофеля в воде потери витамина С составляют около 30%, и при варке в мясном бульоне витамин С практически полностью сохраняется.

Чем больше общее количество аскорбиновой кислоты в продукте, тем лучше сохраняется С-витаминная активность. Этим объясняется тот факт, что в картофеле и капусте витамин С в процессе варки сохраняется лучше осенью, чем весной.

Во время варки аскорбиновая кислота не только разрушается, но и частично переходит в отвар. Поэтому овощные отвары рекомендуется использовать при приготовлении супов и соусов. Для уменьшения потерь витамина С из продуктов желательно избегать длительного хранения очищенных овощей в воде и т.д.

Большие потери витамина С происходят, когда продукты подвергают неоднократным тепловым воздействиям, протирают, взбивают (при изготовлении овощных котлет, запеканок, суфле).

Витамины группы В. При варке они частично переходят в отвар, частично разрушаются. Менее всего устойчив к нагреванию витамин В6. При варке шпината разрушается около 40% его, картофеля - 27-28%.

Тиамина и рибофлавина разрушается при варке овощей около 20%, примерно 40% остатка их переходит в отвар.

Чем больше воды для варки, тем меньше витаминов остается в продукте. [5]

 



Поделиться:


Последнее изменение этой страницы: 2020-03-13; просмотров: 4915; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.250.1 (0.032 с.)