Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Влияние ионизирующего облучения на конденсаторыСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Ионизирующее облучение вызывает обратимое или необратимое изменение емкости и обратимое изменение величины утечки и тангенса угла потерь. Нейтронная радиация приводит к необратимым и обратимым изменениям характеристик конденсаторов, а гамма – облучение – в основном – к обратимым изменениям. Общей причиной этого является изменение электрических характеристик диэлектрика (диэлектрической постоянной и сопротивления). Кроме того происходит выделение газов при облучении в электролитических конденсаторах и конденсаторах с масляным заполнением, что может привести к их разрушению.
Таблица 10.5.
Влияние радиации на конденсаторы.
Сегнетокерамические конденсаторы подвергались импульсному облучению, остальные – непрерывному.
Влияние радиации на полупроводниковые диоды Воздействие радиации на полупроводниковый диод зависит от того, какой эффект использован в качестве основы его работы, вида материала, удельного сопротивления его, а также конструктивных особенностей диода. Германиевые диоды. При облучении нейтронами проводимость диодов (плоскостных и точечных) в обратном направлении увеличивается, в прямом – уменьшается. При потоках более 1013 нейтр/см2 выходят из строя, при - 1011 нейтр/см2 – происходит значительное изменение характеристик. При таких условиях облучения они могут работать в схемах, на работоспособность которых не сказывается существенно изменение характеристик проводимости диодов в обратном направлении. При воздействии малых доз g - облучения (104 Р при мощности дозы 6*104 Р/ч) обратный ток плоскостных диодов возрастает на 10 %, на такую же величину уменьшается емкость p – n перехода, а также возникают фототоки. Через несколько дней после облучения параметры восстанавливаются до первоначального уровня. Кремниевые диоды. Под воздействием нейтронной радиации проводимость точечно – контактных диодов уменьшается в прямом и обратном направлениях; у плоскостных диодов проводимость в прямом направлении также уменьшается. Повреждение диодов обусловливается изменением характеристик проводимости в прямом направлении. Изменение характеристик тем больше, чем больше мощность потока. Доза 1012 нейтр/см2 нейтронного облучения вызывает заметное изменение характеристик диода. Диоды могут быть использованы при облучении нейтронным потоком 1013 - 1017 нейтр/см2, если изменение характеристик в прямом направлении не влияет на работу схемы. Воздействие g - облучения (мощность дозы 106 Р/ч) вызывает обратимые изменения обратного тока, составляющие 10-8 А. Характер воздействия облучения электронами и протонами на германиевые и кремниевые диоды аналогичен нейтронному.
Влияние радиации на транзисторы Воздействие быстрых нейтронов вызывает нарушение кристаллической решетки материала (основной эффект) и ионизацию (вторичный эффект). Вследствие этого изменяются параметры полупроводниковых материалов – время жизни основных носителей (t), удельная проводимость (r), скорость поверхностной рекомбинации дырок с электронами. Вследствие изменения вышеуказанных параметров уменьшается коэффициент усиления по току b0 (a0), увеличивается обратный ток коллектора (Iк0), возрастают шумы транзистора. Изменение коэффициента усиления является необратимым, а изменения обратного тока могут быть обратимыми и необратимыми. Протоны и электроны влияют на характеристики транзисторов также как и нейтронное облучение.
Влияние радиации на коэффициент усиления Максимальный интегральный поток частиц Ф, который может выдерживать транзистор для заданного изменения параметра b0, определяется из соотношения: , (10.1) где fа – граничная частота усиления по току в схеме с общей базой; b0 – коэффициент усиления по току в схеме с общим эмиттером (до начала облучения); b0об - коэффициент усиления по току в схеме с общим эмиттером (после облучения); к – постоянная, зависящая от типа транзистора (нейтр/с)/см2.
Таблица 10.6. Значения коэффициента к.
Как видно из таблицы наибольшую радиационную стойкость имеют германиевые p-n-p транзисторы. Они при прочих равных условиях выдерживают поток быстрых нейтронов на 1 – 2 порядка больше, чем кремниевые. Ориентировочно для оценки радиационной стойкости можно пользоваться диаграммой.
Левые границы прямоугольников соответствуют тем значениям потоков и доз, при которых становятся заметными необратимые изменения, а правые границы – значения потоков и доз, при которых характеристики транзисторов находятся на грани пригодности (в качестве критерия годности выбрано изменение коэффициента усиления b0). Предпочтение следует отдавать германиевым p-n-p транзисторам с высоким значением fа и малым b0 для устройств, работающих в условиях ионизирующей радиации. При радиации происходит в основном изменение кратковременное Iк0. Причинами изменения являются: а) ионизация, создаваемая g - лучами, изменяющая поверхностные свойства полупроводника; б) свойства материала корпуса, окружающего переход; в) разрушения в полупроводниках, обусловленные нейтронами. Ионизация, создаваемая радиацией, инжектирует избыток носителей в транзистор, вследствие чего возникают значительные шумы. Например, облучении потоком g - лучей при мощности дозы 2*106 Р/ч приводит к возрастанию шумов на 2 дб. Шумы исчезают при выходе из поля излучения.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 642; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.168.192 (0.01 с.) |