Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Расчет контура регулирования напряжения↑ ⇐ ПредыдущаяСтр 10 из 10 Содержание книги
Поиск на нашем сайте
Структурная схема первого внутреннего контура представлена на рис. 5.6. Здесь - передаточная функция РН, - ПФ делителя напряжения.
Рис. 5.6. Структурная схема контура регулирования напряжения
В соответствии с методикой подчиненного регулирования координат внутренние контуры настраиваются по быстродействию на так называемый модульный оптимум, которому соответствует желаемая ПФ разомкнутой системы следующего вида
,
где – нескомпенсированная постоянная времени. В качестве берется наименьшая постоянная времени синтезируемого контура, поэтому она часто называется малой постоянной времени. По существу – ПФ реального интегратора. При этом желаемая ПФ замкнутой системы определяется соотношением
,
т.е. представляет собой колебательное звено с незначительным коэффициентом демпфирования . Такой настройке соответствуют высокие динамические показатели качества - перерегулирование и длительность переходного процесса достаточно малы , а точность приемлема, так как контур обладает астатизмом первого порядка. Возьмем в качестве нескомпенсированной постоянной времени постоянную времени обмотки уравнения ЭМУ, т.е. положим . Тогда желаемая ПФ разомкнутого контура будет иметь следующий вид:
Зададимся значением коэффициента передачи датчика напряжения , исходя из следующих соображений. Максимальное напряжение цепи обратной связи , подаваемого на РН, ограничим значением при максимальном значении напряжения генератора , которое равно максимальному напряжению, подаваемому на электродвигатель. Отсюда будем иметь .
Теперь можно определить ПФ разомкнутого контура :
.
После этого рассчитаем ПФ регулятора напряжения по соотношению . В результате получим
,
где с – постоянная времени интегрирования РН. Поделив числитель ПФ на ее знаменатель, определим параллельную структуру РН:
,
где – коэффициент передачи пропорционального звена; с – коэффициент передачи дифференциатора. Анализ показывает, что РН реализует пропорционально - интегрально - дифференциальный (ПИД) закон управления.
Расчет контура регулирования скорости
Первый контур регулирования является подчиненным второму и входит в канал управления последнего в виде подсистемы (звена). С учетом этого схему контура регулирования скорости для простоты расчетов целесообразно представить в виде структуры, изображенной на рис. 5.7. Рис 5.7. Структурная схема контура регулирования скорости
Здесь – ПФ цепи обратной связи, включающей ТГ и его выходной делитель напряжения. Коэффициент передачи цепи обратной связи равен . Положим, что при максимальной скорости вращения двигателя рад/с, напряжение цепи обратной связи не должно превышать максимальное значение В. Чтобы система не работала в режиме насыщения, возьмем максимальную скорость с запасом рад/с. Тогда получим
в·с/рад.
Передаточная функция контура регулирования напряжения равна
.
Согласно методике коррекции с подчиненным регулированием координат в знаменателе следует пренебречь членом , т.к. он очень мал. Это приводит к небольшой погрешности при расчете регулятора скорости РС, но существенно упрощает получение его передаточной функции . Таким образом
. Далее, как и для контура напряжения необходимо сформировать ПФ объекта управления для регулятора скорости. Из рис. 5.7 следует, что она равна
.
В качестве малой нескомпенсированной постоянной времени берется величина , т.е. с. Тогда желаемая ПФ контура скорости при настройке на модульный оптимум будет иметь следующий вид
.
Далее можно определить ПФ регулятора скорости:
,
где с – постоянная времени интегрирования РС. Полученная ПФ регулятора скорости показывает, что РС также, как и РН является ПИД - регулятором:
,
где – коэффициент передачи пропорционального звена; с – коэффициент передачи дифференциатора.
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 363; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.96.108 (0.006 с.) |