По наличию внутреннего источника энергии 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

По наличию внутреннего источника энергии



· системы прямого действия,

· системы с вспомогательным источником энергии.

9 По принципу регулирования:

· по отклонению:

Подавляющее большинство систем построено по принципу обратной связи - регулирования по отклонению (см. рисунок 1.9). Принцип действия такой системы рассмотрен выше.

· по возмущению.

Данные системы могут быть использованы в том случае, если есть возможность измерения возмущающего воздействия (см. рисунок 1.10).

На схеме обозначено К - корректирующее звено.

 

· комбинированные - сочетают в себе особенности предыдущих АСР.

Данный способ (см. рисунок 1.11) достигает высокого качества управления, поскольку здесь идет коррекция управляющего воздействия не только по величине ошибки, но и по возмущающему воздействию, однако применение данного способа регулирования ограничено тем, что возмущающее воздействие f не всегда возможно измерить.

 

 
 

 


Классификация элементов систем

Системы управления строятся из элементов (устройств, к числу которых можно отнести регуляторы, датчики, исполнительные устройства, а также элементы объекта управления). Элементы СУ также можно классифицировать по нескольким признакам.

1 По функциональному назначению:

· измерительные,

· усилительно-преобразовательные,

· исполнительные,

· корректирующие.

2 По виду энергии, используемой для работы:

· электрические,

· гидравлические,

· пневматические,

· механические,

· комбинированные.

3 По наличию или отсутствию вспомогательного источника энергии:

· активные (с источником энергии),

· пассивные (без источника).

4 По характеру математических соотношений:

· линейные – для которых справедлив принцип суперпозиции,

· нелинейные.

5 По поведению в статическом режиме:

· статические, у которых имеется однозначная зависимость между входным и выходным воздействиями (состояние статики). Примером является любой тепловой объект. Например, если на вход электрического нагревателя подать некоторое напряжение, то с течением времени его температура установится на соответствующем значении (вид зависимости температуры от времени может иметь вид, представленный на рисунке 1.12, а). При этом установившаяся температура будет зависеть от величины поданного напряжения.

· астатические - у которых эта зависимость отсутствует. То есть, при постоянном входном воздействии амплитуда сигнала на выходе непрерывно растет с постоянной скоростью, ускорением и т.д. Пример: Зависимость угла поворота ротора электродвигателя от приложенного напряжения. При подаче напряжения угол поворота будет постоянно возрастать, поэтому однозначной зависимости у него нет (пример см. на рисунке 1.12, б).

 
 

 


а) б)

Рисунок 1.12

 

Характеристики и модели элементов и систем

Основные модели

Работу системы регулирования можно описать словесно. Так, в п. 1.1 описана система регулирования температуры сушильного шкафа. Словесное описание помогает понять принцип действия системы, ее назначение, особенности функционирования и т.д. Однако, что самое главное, оно не дает количественных оценок качества регулирования, поэтому не пригодно для изучения характеристик систем и построения систем автоматизированного управления. Вместо него в ТАУ используются более точные математические методы описания свойств систем:

· статические характеристики,

· временные характеристики,

· дифференциальные уравнения,

· передаточные функции,

· частотные характеристики и др.

В любой из этих моделей система может быть представлена в виде звена, имеющего входные воздействия Х, возмущения F и выходные воздействия Y (см. рисунок 1.13). Под влиянием входных воздействий выходная величина может изменяться.

Установившийся режим - это режим, при котором расхождение между истинным значением регулируемой величины и ее заданным значением будет постоянным во времени.

 

Статические характеристики

Статической характеристикой элемента называется зависимость установившихся значений выходной величины от значения величины на входе системы, т.е.

 

yуст = j(х).

 

Статическую характеристику (см. рис. 1.14) часто изображают графически в виде кривой у(х).

Линейным статическим элементом называется безынерционный элемент, обладающий линейной статической характеристикой:

ууст = К*х + а0.

Как видно, статическая характеристика элемента в данном случае имеет вид прямой с коэффициентом наклона К.

Линейные статические характеристики, в отличие от нелинейных, более удобны для изучения благодаря своей простоте. Если модель объекта нелинейна, то обычно ее преобразуют к линейному виду путем линеаризации.

САУ называется статической, если при постоянном входном воздействии ошибка управления е стремится к постоянному значению, зависящему от величины воздействия.

САУ называется астатической, если при постоянном входном воздействии ошибка управления стремится к нулю вне зависимости от величины воздействия.

 

 

Временные характеристики

Переход системы от одного установившегося режима к другому при каких-либо входных воздействиях называется переходным процессом. Переходные процессы могут изображаться графически в виде кривой y(t).

Например, процесс нагрева сушильного шкафа до установившегося значения может иметь вид, представленный на рисунке 1.15.

То есть переходный процесс характеризует динамические свойства системы, ее поведение.

Следует различать динамические и статические характеристики, поскольку они строятся в разных координатах и характеризуют различные свойства системы. Зная набор динамических характеристик при различных входных воздействиях, можно построить статическую характеристику, но по статической характеристике восстановить динамику невозможно.

Поскольку входные воздействия могут изменяться во времени, то и переходные характеристики будут каждый раз разные. Для простоты анализа систем входные воздействия приводят к одному из типовых видов сигналов (см. рисунок 1.16).

 

 
 

 

 


В зависимости от вида входного воздействия функция у(t) может иметь разное обозначение:

Переходной характеристикой h(t) называется реакция объекта на единичное ступенчатое воздействие (сигнал) при нулевых начальных условиях, т.е. при х(0) = 0 и у(0) = 0.

Импульсной характеристикой w(t) называется реакция объекта на d-функцию при нулевых начальных условиях.

При подаче на вход объекта синусоидального сигнала на выходе, как правило, в установившемся режиме получается также синусоидальный сигнал, но с другой амплитудой и фазой: y = Aвых*sin(w*t + j), где Aвых - амплитуда, w - частота сигнала, j - фаза.

Частотной характеристикой (ЧХ, АФХ и др.) называется зависимость амплитуды и фазы выходного сигнала системы в установившемся режиме при приложении на входе гармонического воздействия.



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 371; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.207.240.205 (0.026 с.)