Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Общие сведения о жидкости 1.1. Жидкость как физическое тело

Поиск

Введение

Гидравлика представляет собой теоретическую дисциплину, изучающую вопросы,

связанные с механическим движением жидкости в различных природных и техногенных условиях. Поскольку жидкость (и газ) рассматриваются как непрерывные и неделимые физические тела, то гидравлику часто рассматривают как один из разделов механики так называемых сплошных сред, к каковым принято относить и особое физическое тело -жидкость. По этой причине гидравлику часто называют механикой жидкости или гидро­механикой; предметом её исследований являются основные законы равновесия и движе­ния жидкостей и газов. Как в классической механике в гидравлике можно выделить обще­принятые составные части: гидростатику, изучающую законы равновесия жидкости; ки­нематику, описывающую основные элементы движущейся жидкости и гидродинамику, изучающую основные законы движения жидкости и раскрывающую причины её движе­ния.

Гидравлику можно назвать базовой теоретической дисциплиной для обширного кру­га прикладных наук, с помощью которых исследуются процессы, сопровождающие рабо­ту гидравлических машин, гидроприводов. С помощью основных уравнений гидравлики и разработанных ею методов исследования, решаются важные практические задачи, связан­ные с транспортом жидкостей и газов по трубопроводам, а также с транспортом твёрдых тел по трубам и другим руслам. Гидравлика также решает важнейшие практические зада­чи, связанные с равновесием твёрдых тел в жидкостях и газах, т.е. изучает вопросы плава­ния тел.

Широкое использование в практической деятельности человека различных гидрав­лических машин и механизмов ставят гидравлику в число важнейших дисциплин, обеспе­чивающих научно-технический прогресс.

Большой практический интерес к изучению механики жидкости вызван рядом объек­тивных факторов. В - первых, наличие в природе значительных запасов жидкостей, кото­рые легко доступны человеку. Во- вторых, жидкие тела обладают рядом полезных свойств, делающих их удобными рабочими агентами в практической деятельности чело­века. Немаловажным следует считать и тот фактор, что большинство жизненно важных химических реакций обмена протекают в жидкой фазе (чаще всего в водных растворах).

По этим причинам особый интерес человек проявил к жидкостям на самой ранней стадии своего развития. Вода и воздух (иначе жидкость и газ) были отнесены к числу ос­новных стихий природы уже первобытным человеком. История свидетельствует об ус­пешном решении ряда практических задач с использованием жидкостей уже на самих ранних стадиях развития человека. Первым же научным трудом по гидравлике следует

считать трактат Архимеда «О плавающих телах» (250 г. до н. э.)- Однако в дальнейшем на протяжении нескольких столетий в развитии человечества наступила эпоха всеобщего за­стоя, когда развитие знаний и практического опыта находились на весьма низком уровне. В последующую за этим эпоху возрождения началось бурное развитие человеческих зна­ний, науки, накопление практического опыта. Наравне с развитием других наук начала развиваться и наука об изучении взаимодействия жидких тел.

Первыми крупными работами в этой области следует считать работы Леонардо да Винчи (1548-1620) - в области плавания тел, движения жидкостей по трубам и каналам. В работах Галилео Галилея (1564 - 1642) были сформулированы основные принципы равно­весия и движения жидкости; работы Эванджелиста Торичелли (1604 - 1647) были посвящены решению задач по истечению жидкости из отверстий, а Блез Паскаль (1623 - 1727) исследовал вопросы по передаче давления в жидкости. Основополагающие и обобщаю­щие работы в области механики физических тел, в том числе и жидких, принадлежат ге­ниальному английскому физику Исааку Ньютону (1643 - 1727), который впервые сфор­мулировал основные законы механики, закон всемирного тяготения и закон о внутреннем трении в жидкостях при их движении.

Развитию гидромеханики (гидравлики) как самостоятельной науки в значительной степени способствовали труды русских учёных Даниила Бернулли (1700 - 1782), Леонарда Эйлера (1707 - 1783), М.В. Ломоносова (1711 - 1765). Работы этих великих русских учё­ных обеспечили настоящий прорыв в области изучения жидких тел: ими впервые были опубликованы дифференциальные уравнения равновесия и движения жидкости Эйлера, закон сохранения энергии Ломоносова, уравнение запаса удельной энергии в идеальной жидкости Бернулли.

Развитию гидравлики как прикладной науки и сближению методов изучения теоре­тических и практических вопросов используемых гидравликой и гидромеханикой способ­ствовали работы французских учёных Дарси, Буссинэ и др., а также работы Н.Е. Жуков­ского. Благодаря трудам этих учёных, а также более поздним работам Шези, Вейсбаха, Прандля удалось объединить теоретические исследования гидромеханики с практически­ми и экспериментальными работами, выполненными в гидравлике. Работы Базена, Пуа-зейля, Рейнольдса, Фруда, Стокса и др. развили учение о динамике реальной (вязкой жид­кости). Дифференциальное уравнение Навье - Стокса позволило описать движение реаль­ной жидкости как функцию параметров этой жидкости в зависимости от внешних усло­вий. Дальнейшие работы в области теоретической и прикладной гидромеханики были на­правлены на развитие методов решения практических задач, развитие новых методов ис­следования, новых направлений: теория фильтрации, газо- и аэродинамика и др.

При решении практических вопросов гидравлика оперирует всеми известными мето­дами исследований: методом анализа бесконечно малых величин, методом средних вели­чин, методом анализа размерностей, методом аналогий, экспериментальным методом.

Метод анализа бесконечно малых величин - наиболее удобный из всех методов для количественного описания процессов равновесия и движения жидкостей и газов. Этот ме­тод наиболее эффективен в тех случаях, когда приходится рассматривать движение объек­тов на атомно-молекулярном уровне, т.е. в тех случаях, когда для вывода уравнений дви­жения приходится рассматривать жидкость (или газ) с молекулярно-кинетической теории строения вещества. Основной недостаток метода - довольно высокий уровень абстракции, что требует от читателя обширных знаний в области теоретической физики и умение пользоваться различными методами математического анализа, включая векторный анализ.

Метод средних величин - является более доступным методом, поскольку его основ­ные положения базируется на простых (близких к обыденным) представлениях о строении вещества. При этом выводы основных уравнений в большинстве случаев не требуют зна­ний молекулярно-кинетической теории, а результаты, полученные при исследованиях, этим методом не противоречат «здравому смыслу» и кажутся обоснованными. Недостаток этого метода исследований связан с необходимостью иметь некоторые априорные пред­ставления о предмете исследований.

Метод анализа размерностей может рассматриваться в качестве одного из дополни­тельных методов исследований и предполагает всестороннее знания изучаемых физиче­ских процессов.

Методом аналогий - используется в тех случаях, кода имеются в наличии детально изученные процессы, относящиеся к тому же типу взаимодействия вещества, что и изу­чаемый процесс.

Экспериментальный метод является основным методом изучения, если другие мето­ды по каким- либо причинам не могут быть применены. Этот метод также часто использу­ется как критерий для подтверждения правильности результатов полученных другими ме­тодами.

В конечном счёте, метод изучения движения жидкости, а также уровень изучения (макро или микро) выбирается из условий практической постановки задач и соотношения характерных размеров. Основным мерилом для этих характерных размеров может быть длина свободного пробега молекул. Так для изучения движения жидкости на макро уров­не необходимо, чтобы характерные размеры: L (некоторая длина) и d (ширина) по отно­шению к длине свободного пробега молекул А, находились в соответствии:

 

Многокомпонентные жидкости

В природе химически чистых жидкостей нет, технических рафинированных тоже немного. Обычно в основной жидкости всегда имеются незначительные или весьма суще­ственные добавки (примеси). Для капельной жидкости примесями могут быть другие жидкости, газы и твёрдые тела. В таких случаях жидкость с примесями может образовать гомогенную или гетерогенную смесь.

Гомогенные смеси образуются в тех случаях, когда в основной жидкости (в таких случаях эта жидкость называется растворителем) примеси распределяются по всему объё­му растворяющей жидкости равномерно на уровне молекул. В таких случаях смесь физи­чески представляет собой однородную среду, называемую раствором. Сами же примеси носят название компонент. Физические свойства такой гомогенной смеси (плотность и удельный вес) можно определить по компонентному составу:

где:- плотность смеси,

- плотность i - той компоненты, количество / - той компоненты.

Величины других параметров смеси (вязкость и др.) зависят от многих физико-химических факторов, что является самостоятельным объектом изучения.

В тех случаях, когда примеси в основной жидкости находятся не на молекулярном уровне, а в виде частиц, представляющих собой многочисленные ассоциации молекул ве­щества примеси, то такие смеси не могут считаться однородными растворами. Физиче­ские свойства таких смесей (включая плотность и удельный вес) будут зависеть от того, какое вещество будет находиться в точке измерения. Такие смеси будут неоднородными (гетерогенными) смесями. В литературе такие смеси часто называют многофазными жид­костями. Отличительной особенностью многофазных жидкостей является наличие в них внутренних границ раздела между фазами, вдоль этих поверхностей раздела действуют силы поверхностного натяжения, которые могут оказаться значительными при большой площади поверхности границ между фазами. Силы поверхностного натяжения вкупе с

другими силами, действующими в многофазной жидкости, увеличивают силы сопротив­ления движению жидкости.

Примеров многофазных жидкостей в природе достаточно: эмульсии - смеси двух и более нерастворимых друг в друге жидкостей; газированные жидкости - смеси жидкости со свободным газом, окклюзии - смеси жидких и газообразных углеводородов; суспензии и пульпы - смеси жидкостей и твёрдых частиц, находящихся в жидкости во взвешенном состоянии и т.д.

Неньютоновские жидкости

Многокомпонентные жидкости как гомогенные, так и гетерогенные, в большей сте­пени, могут содержать в своём составе компоненты, значительно изменяющие вязкость жидкости, и даже кардинально меняющие саму физическую основу и природу внутренне­го трения. В таких жидкостях гипотеза вязкостного трения Ньютона (пропорциональность напряжений градиенту скорости относительного движения жидкости) неприменима. Со­ответственно такие жидкости принято называть неньютоновскими жидкостями.

Среди неньютоновских жидкостей принято выделять вязкопластичные жидкости, псевдопластичные жидкости и дилатантные жидкости. Для вязкопластичных жидкостей характерной особенностью является то, что они до достижения некоторого критического внутреннего напряжения т0 ведут себя как твёрдые тела и лишь при превышении внут­реннего напряжения выше критической величины начинают двигаться как обычные жид­кости. Причиной такого явления является то, что вязкопластичные жидкости имеют про­странственную жёсткую внутреннюю структуру, сопротивляющуюся любым внутренним напряжениям меньшим критической величины, это критическое напряжение в литературе называют статическим напряжением сдвига. Для вязкопластичных жидкостей справедли­вы следующие соотношения Бингама:

Для псевдопластичных жидкостей зависимость между внутренним напряжением сдвига и градиентом скорости относительного движения слоев жидкости в логарифмиче­ских координатах оказывается на некотором участке линейной. Угловой коэффициент со­ответствующей прямой линии заключён между 0 и 1 Поэтому зависимость между напря­жением и градиентом скорости можно записать в следующем виде:

где: k - мера консистенции жидкости,

п - показатель, характеризующий отличие свойств псевдопластичной жидкости от ньютоновской.

Для псевдопластичных жидкостей полезно ввести понятие кажущейся вязкости жид­кости

тогда: , т.е. величина кажущейся вязкости псевдопластичной жидко-

сти убывает с возрастанием градиента скорости.

Дилатантные жидкости описываются тем же самым уравнением, что и псевдопла­стичные жидкости, но при показателе п > 1.У таких жидкостей кажущаяся вязкость уве­личивается при возрастании градиента скорости. Такая модель жидкости может быть применена при описании движения суспензий.

Неньютоновские жидкости обладают ещё одним свойством, их вязкость существен­ным образом зависит от времени. По этой причине (например, для вязкопластичных жид­костей) величина статического напряжения сдвига зависит от предыстории: чем более длительное время жидкость находилась в состоянии покоя, тем выше величина неё стати­ческого напряжения сдвига. Если прервать движение такой жидкости (остановить её), то для начала движения такой жидкости потребуется развить в жидкости меньшее напряже­ние, чем и том случае, когда она находилась в покое длительное время. Следовательно, необходимо различать величину начального статического напряжения сдвига и динамиче­скую величину этого показателя. Жидкости, которые обладают такими свойствами, назы­ваются тиксотропными. Жидкости, у которых наоборот динамические характеристики выше, чем начальные называются реопектическими неньютоновскими жидкостями. Такие явления объясняются тем, что внутренняя структура таких жидкостей способна упроч­няться с течением времени, или (в другом случае) для восстановления начальных свойств им требуется некоторое время.

 

Поток жидкости

Поток жидкости представляет собой совокупность элементарных струек жидкости. По этой причине основные кинематические характеристики потока во многом совпадают по своему смыслу с аналогичными характеристиками для элементарной струйки жидко­сти. Тем не менее, различия всё же имеются. Так в отличие от элементарной струйки, ко­торая отделена от остальной жидкости поверхностью трубки тока, образованной линиями тока, поток жидкости имеет реальные границы в виде твёрдой среды, газообразной или жидкой сред. По типу границ потоки можно разделить на следующие виды:

напорные, когда поток ограничен твёрдой средой по всему периметру сече­ния,

безнапорные, когда часть сечения потока представляет собой свободную по­верхность жидкости,

гидравлические струи, когда поток ограничен только жидкой или газообраз­ной средой. Если гидравлическая струя ограничена со всех сторон жидко­стью, то она называется затопленной гидравлической струёй, если гидравли­ческая струя ограничена со всех сторон газовой средой, то такая струя назы­вается незатопленной.

Поперечное сечение потока, расположенное нормально к линиям тока, называется живым сечением потока. Площадь живого сечения потока определяется соотношением:

Расход жидкости в потоке определяется как отношение объёма жидкости протекаю­щее через живое сечение потока к интервалу времени или определяется следующим соот­ношением:

Кроме известной размерности расхода в системе СИ м3 имеется целый набор вне­системных единиц для измерения расхода жидкости в потоке: м3/сут, л/чс, л/с, и др.

Средней скоростью в живом сечении потока называ­ется величина:

Смоченным периметром живого сечения потока П называется часть контура живого сечения потока, которая ограничена твёрдой средой. (На рисунке смоченный пери­ метр выделен жирной линией).

Отношение площади живого сечения потока к длине

смоченного периметра называется гидравлическим радиусом живого сечения.

Величина гидравлического радиуса круглого сечения радиуса г:

равна половине величины его геометрического радиуса. Величина гидравлического радиуса трубы квадратного сечения со стороной а, (полностью заполненной жидкостью)

равна

Динамика идеальной жидкости

4.1. Дифференциальное уравнение движения идеальной жидкости (при устано­вившемся движении) и его интегрирование

Для вывода уравнения движения жидкости обратимся к записанному ранее уравне­нию равновесия жидкости (в проекциях на координатные оси), иначе говоря: . Поскольку в идеальной жидкости никаких сосредоточенных сил действовать не может, то последнее уравнение чисто условное. Когда равнодейст­вующая отлична от 0, то жидкость начнёт двигаться с некоторой скоро­стью, т.е. в соответствии со вторым законом Ньютона, частицы жидкости, состав­ляющие жидкое тело получат ускорение.

Тогда уравнение движения жидкости в проекциях на координатные оси можно запи­сать в следующем виде:

Согласно основному положению о поле скоростей (метод Эйлера) для проекций ско­ростей движения жидкости можно записать следующее:

или (для установившегося движения жидкости):

Найдём первые производные от скоростей по времени, т.е. определим ускорения вдоль осей координат:

отметим, что:

' * /

Теперь подставив выражения для ускорений в исходную систему дифференциальных уравнений движения жидкости, получим систему уравнений Эйлера в окончательном ви-де2:

Теперь вновь обратимся к системе дифференциальных уравнений движения жидко­сти, умножив обе части 1-го уравнения на dx, 2-го уравнения на dy, 3-го уравнения на dz, получим:

и просуммировав эти уравнения по частям, получим:

2 При неустановившемся движении жидкости уравнения Эйлера дополняются первыми слагаемыми.

Преобразуем левую часть полученного уравнения, полагая, что

в результате запишем

Слагаемые в правой части уравнения являются полными дифференциалами функ­ций.

Теперь уравнение примет вид

Если из массовых сил на жидкость действует только сила тяжести, то , и

>,*

тогда получим:

После интегрирования получим:

?

разделив почленно все члены уравнения на g, получим так называемое уравнение Бернулли

Здесь величина Н называется гидродинамическим напором Величина гидродинами­ческого напора постоянна для всех живых сечений элементарной струйки идеальной жид­кости.

Потери напора по длине

При установившемся движении реальной жидкости основные параметры потока: ве­личина средней скорости в живом сечении (v) и величина перепада давления зависят от физических свойств, движущейся жидкости и от размеров пространства, в котором жидкость движется. В целом, физические свойства жидкости определяются через размер­ные величины, называемые физическими параметрами жидкости.

Можно установить взаимосвязь между всеми параметрами, от которых зависит дви­жение жидкости. Условно эту зависимость можно записать как некоторую функцию в не­явном виде.

где: - линейные величины, характеризующие трёхмерное

пространство,

- линейная величина, характеризующая состояние стенок ка­нала (шероховатость), величина выступов,

- средняя скорость движения жидкости в живом сечении по­тока,

- разность давления между начальным и конечном живыми сечениями потока (перепад давления),

- удельный вес жидкости,

- плотность жидкости,

- динамический коэффициент вязкости жидкости,

- поверхностное натяжение жидкости, К - модуль упругости жидкости.

Для установления зависимости воспользуемся выводами так называемой -теоремы. Суть её заключается в том, что написанную выше зависимость, выраженную в неявном виде, можно представить в виде взаимозависимых безразмерных комплексов. Выберем

три основных параметра с независимыми размерностями , остальные парамет-

ры выразим через размерности основных параметров.

Эта операция выполняется следующим образом: пусть имеется некоторый параметр i, выразим его размерность через размерности основных параметров; это будет означать:

?

т.е. размерности левой и правой частей равенства должны быть одинаковыми. Тогда можно записать:

Полученные в результате такой операции безразмерные параметры будут называться пи-членами. Эти безразмерные комплексы имеют глубокий физический смысл, они пред­ставляют собой критерии подобия различных сил, действующих в тех или иных процес­сах.

Проделаем такую операцию с некоторыми из параметров.

Параметр А.

i

Теперь запишем показательные уравнения по размерностям последовательно в сле­дующем порядке: L (длина), М (масса), и Т (время):

Из этой системы уравнений: Таким образом, безразмерным

комплексом по этому параметру может быть: Параметр у.

>* ' откуда получим:

и найдём: . Таким образом, безразмерным комплексом по

этому параметру может быть: . Эта безразмерная величина называется

числом Фруда, Fr. Параметр /и.

и найдём:

Полученный безразмерный комплекс называется числом Рейнольдса, Re. Выполняя аналогичные операции с остальными параметрами можно найти:

число Эйлера, число Вебера, We.

число Коши, Са. В итоге получим как результат:

Поскольку, в большинстве случаев силами поверхностного натяжения можно пре­небречь, а жидкость считать несжимаемой средой, можно упростить запись предыдущего выражения, решив последнее уравнение относительно Ей:

Считая канал круглой цилиндрической трубой, и принимая , получим:

Множитель был вынесен за скобки ввиду того, что потери напора по длине пропор­циональны длине канала конечных размеров. Далее учитывая, что: , по­лучим:

Обозначим: Эту величину принято называть коэффициен-

том сопротивления трения по длине или коэффициентом Дарси. Окончательно для круглых труб, учитывая, что :

Эта формула носит название формулы Дарси-Вейсбаха и является одной из основ­ных формул гидродинамики.

Коэффициент потерь напора по длине будет равен:

Запишем формулу Дарси-Вейсбаха в виде:

Величину называют гидравлическим уклоном, а величину называ-

ют коэффициентом Шези.

Величина имеет размерность скорости и носит название динамической

скорости жидкости.

Тогда коэффициент трения (коэффициент Дарси):

' ' 6. Режимы движения жидкости

Отверстие в тонкой стенке

Одной из типичных задач гидравлики, которую можно назвать задачей прикладного

характера, является изучение процессов, связанных с истечением жидкости из отверстия в тонкой стенке и через насадки. При таком движении вся потенциальная энергия жидкости находящейся в ёмкости (резервуаре) в конечном итоге расходуется на кинетическую энер­гию струи, вытекающей в газообразную среду, находящуюся под атмосферным давлением или (в отдельных случаях) в жидкую среду при определённом давлении. Отверстие будет считаться малым, если его размеры несоизмеримо малы по сравнению с размером свобод­ной поверхности в резервуаре и величиной напора. Стенка называется тонкой, если вели­чиной гидравлических сопротивлений по длине канала в тонкой стенке можно пренеб­речь. В таком случае частицы жидкости со всех сторон по криволинейным траекториям движутся с некоторым ускорением к отверстию. Дойдя до отверстия, струя жидкости от­рывается от стенки и испытывает преобразования уже за пределами отверстия.

Движении (жидкости).

Истечение жидкости в газовую среду при атмосферном давлении. При истечении из

отверстия в тонкой стенке криволи­нейные траектории частиц жидкости сохраняют свою форму и за пределами отверстия, т.е. после выхода из отвер­стия сечение струи уменьшается и дос­тигает минимальных значений на рас­стоянии равном (d - диаметр отверстия). Таким образом, в сечении В - В будет находиться как назы­ваемое сжатое сечение струи жидкости. Отношение площади

чения струи к площади отверстия называется коэффсщииитоживинфиясфэ&мзвтачаетр^ивсек

гда:

где: s - площадь отверстия,

зсж - площадь сжатого сечения струи, s - коэффициент сжатия струи.

Запишем уравнение Бернулли для двух сечений А -А и В -В. В связи с тем, что от­верстия в стенке является малым сечение В -В можно считать «горизонтальным» (ввиду малости отверстия), проходящим через центр тяжести сжатого сечения струи.

i. *"*

Поскольку величина скоростного напора на свободной поверхности жидкости (сече­ние А - А) мала из-за малости скорости, то её величиной можно пренебречь. В данном случае истечение жидкости происходит в атмосферу, следовательно р{ - р0. Тогда:

т г

F> f

Поскольку в тонкой стенке потери напора по длине бесконечно малы, то

где' - коэффициент потерь напора в тонкой стенке Следовательно, скорость в сжатом сечении струи будет равна:

Первый сомножитель в равенстве носит название коэффициента скорости'

Определим расход жидкости при её истечении из отверстия (заметим, что скорость истечения жидкости у нас относится к площади сжатого живого сечения струи):

где: - называется коэффициентом расхода.

При изучении процесса истечения жидкости предполага­лось, что ближайшие стенки и дно сосуда находятся на достаточ­но большом удалении от отверстия: , т.е. не ближе тройного расстояния от направляющих стенок. В этом случае все линии тока имеют одинаковую кривизну, и такое сжатие струи

называется совершенным сжатием. В иных случаях близко расположенные стенки явля­ются для струи направляющими элементами, и её сжатие будет несовершенным (не оди-

наковым со всех сторон). В тех случаях, когда отверстие непосредственно примыкает к одной из сторон отверстия (сечение отверстия не круглое), сжатие струи будет неполным. При неполном и несовершенном сжатии струи наблюдается некоторое увеличение коэффициента расхода. При полном совершенном сжатии струи коэффициент сжатия дос­тигает 0,60 - 0,64. Величины коэффициентов сжатия струи, коэффициента расхода зависят

от числа Рейнольдса (см. рисунок), причём коэффициенты сжатия и скорости в разных направлениях: с возрастанием числа Рей­нольдса коэффициент скорости увеличивает­ся, а коэффициент сжатия струи убывает. В результате этого коэффициент расхода оста­ ётся практически неизменным (исключением являются потоки жидкости с весьма малыми числами Рейнольдса).

Величины коэффициента расхода измеряются простым замером фактического расхо­да жидкости через отверстие и сопоставлением его с теоретически вычисленным значени­ем.

Коэффициент сжатия струи измеряется путём непосредственного определения сжа­того сечения струи, коэффициент скорости - по траектории струи.

Истечение жидкости через затопленное отверстие. Истечение через затопленное от­верстие в тонкой стенке, т.е. под уровень жидкости ничем существенным не отличается от истечения в атмосферу.

Пусть в резервуаре имеется перегородка с отверстием, уровни жидкости находятся

на отметках и относи­тельно плоскости сравнения, проходящей через центр тя­жести отверстия. Запишем уравнение Бернулли для свободных поверхностей жидкости (сечение А - А и сечение В - В относительно плоскости сравнения О - О).

Потери напора состоят из двух частей: потеря напора при истечении из отверстия в тонкой стенке (как при истечении в атмосферу):

и потеря на внезапное расширение струи от сжатого сечения до сечения резервуара:

р *

Подставив полученные выражения для видов потерь в предыдущее уравнение, полу­чим:

В данном случае действующим напором является разность уровней свободных по­верхностей жидкости z. Скорость истечения будет равна:

j * * *

Обозначив: получим выражение для расхода жидкости1

•>

Классификация трубопроводов

Роль трубопроводных систем в хозяйстве любой страны, отдельной корпорации или просто отдельного хозяйства трудно переоценить. Системы трубопроводов в настоящее время являются самым эффективным, надёжным и экологически чистым транспортом для жидких и газообразных продуктов. Со временем их роль в развитии научно-технического прогресса возрастает. Только с помощью трубопроводов достигается возможность объе­динения стран производителей углеводородного сырья со странами потребителями. Большая доля в перекачке жидкостей и газов по праву принадлежит системам газопрово­дов и нефтепроводов, но значительную роль играют такие системы как водоснабжение и канализация, теплоснабжение и вентиляция, добыча некоторых твёрдых ископаемых и их гидротранспорт. Практически в каждой машине и механизме значительная роль принад­лежит трубопроводам.

По своему назначению трубопроводы принято различать по виду транспортируемой по ним продукции:

газопроводы,

- нефтепроводы,

- водопроводы, воздухопроводы,

- продуктопроводы.

По виду движения по ним жидкостей трубопроводы можно разделить на две катего­рии:

напорные трубопроводы,

безнапорные (самотёчные) трубопроводы.

Также трубопроводы можно подразделить по виду сечения: на трубопроводы круг­лого и не круглого сечения (прямоугольные, квадратные и другого профиля). Трубопро­воды можно разделить и по материалу, из которого они изготовлены: стальные трубопро­воды, бетонные, пластиковые и др.

Дать полную и исчерпывающую классификацию трубопроводов вряд ли удастся из-за многообразия их функций и областей использования. Нас будут интересовать лишь те классификации, которые влияют на принятые методы и способы описания движения по ним жидкостей и газов.

Простой трубопровод

Основным элементом любой трубопроводной системы, какой бы сложной она ни была, является простой трубопровод. Классическим определением его будет- простым

трубопроводом является трубопровод, собранный из труб одинакового диаметра и качест­ва его внутренних стенок, в котором движется транзитный поток жидкости, и на котором нет местных гидравлических сопротивлений.

При напорном движении жидкости простой трубопровод работает полным

сечением = const. Размер

сечения трубопровода (диаметр или ве­личина гидравлического радиуса), а так­же его протяжённость (длина) трубопровода (/, L) являются основными геометрическими характеристиками трубопровода. Основными технологическими характеристиками тру­бопровода являются расход жидкости в трубопроводе Q и напор (на головных сооруже­



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 359; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.107.159 (0.015 с.)