Классификация архитектур по параллельной обработке данных



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Классификация архитектур по параллельной обработке данных



Понятие архитектуры высокопроизводительной системы является достаточно широким, поскольку под архитектурой можно понимать и способ параллельной обработки данных, используемый в системе, и организацию памяти, и топологию связи между процессорами, и способ исполнения системой арифметических операций.

В 1966 г. М.Флинном был предложен чрезвычайно удобный подход к классификации архитектур вычислительных систем. В его основу было положено понятие потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором. Соответствующая система классификации основана на рассмотрении числа потоков инструкций и потоков данных и описывает четыре архитектурных класса:

SISD = Single Instruction Single Data MISD = Multiple Instruction Single Data SIMD = Single Instruction Multiple Data MIMD = Multiple Instruction Multiple Data

SISD (single instruction stream / single data stream) – одиночный поток команд и одиночный поток данных. К этому классу относятся последовательные компьютерные системы, которые имеют один центральный процессор, способный обрабатывать только один поток последовательно исполняемых инструкций.

Примерами компьютеров с архитектурой SISD могут служить большинство рабочих станций Compaq, Hewlett-Packard и Sun Microsystems.

MISD (multiple instruction stream / single data stream) – множественный поток команд и одиночный поток данных. Теоретически в этом типе машин множество инструкций должно выполняться над единственным потоком данных. До сих пор ни одной реальной машины, попадающей в данный класс, создано не было.

SIMD (single instruction stream / multiple data stream) – одиночный поток команд и множественный поток данных. Эти системы обычно имеют большое количество процессоров, от 1024 до 16384, которые могут выполнять одну и ту же инструкцию относительно разных данных в жесткой конфигурации. Единственная инструкция параллельно выполняется над многими элементами данных. Примерами SIMD-машин являются системы CPP DAP, Gamma II и Quadrics Apemille.

MIMD (multiple instruction stream / multiple data stream) – множественный поток команд и множественный поток данных. Эти машины параллельно выполняют несколько потоков инструкций над различными потоками данных.

Классификация архитектур вычислительных систем нужна для того, чтобы понять особенности работы той или иной архитектуры, но она не является достаточно детальной, чтобы на нее можно было опираться при создании МВС, поэтому следует вводить более детальную классификацию, которая связана с различными архитектурами ЭВМ и с используемым оборудованием.

 

SMP и MPP-архитектуры.

SMP (symmetric multiprocessing) – симметричная многопроцессорная архитектура. Главной особенностью систем с архитектурой SMP является наличие общей физической памяти, разделяемой всеми процессорами.

Память служит для передачи сообщений между процессорами, все вычислительные устройства имеют равные права и одну и ту же адресацию для всех ячеек памяти. Поэтому SMP-архитектура называется симметричной. SMP-система строится на основе высокоскоростной системной шины, к слотам которой подключаются функциональные блоки типов: процессоры (ЦП), подсистема ввода/вывода (I/O) и т. п. Для подсоединения к модулям I/O используются уже более медленные шины. Наиболее известными SMP-системами являются SMP-cерверы и рабочие станции на базе процессоров Intel.

Основные преимущества SMP-систем:

  • простота и универсальность для программирования.
  • простота эксплуатации.
  • относительно невысокая цена.

Недостатки: системы с общей памятью плохо масштабируются.

 

MPP (massive parallel processing) – массивно-параллельная архитектура. Главная особенность такой архитектуры состоит в том, что память физически разделена. В этом случае система строится из отдельных модулей, содержащих процессор, локальный банк операционной памяти (ОП), коммуникационные процессоры (рутеры) или сетевые адаптеры, иногда – жесткие диски и/или другие устройства ввода/вывода.

Главным преимуществом систем с раздельной памятью является хорошая масштабируемость.

Недостатки:

  • отсутствие общей памяти заметно снижает скорость межпроцессорного обмена
  • каждый процессор может использовать только ограниченный объем локального банка памяти;
  • требуются значительные усилия для того, чтобы максимально использовать системные ресурсы

Системами с раздельной памятью являются суперкомпьютеры МВС-1000, IBM RS/6000 SP, SGI/CRAY T3E, системы ASCI, Hitachi SR8000, системы Parsytec.

 

 

Гибридная архитектура (NUMA). Организация когерентности многоуровневой иерархической памяти

Главная особенность гибридной архитектуры NUMA (nonuniform memory access) – неоднородный доступ к памяти.

Гибридная архитектура совмещает достоинства систем с общей памятью и относительную дешевизну систем с раздельной памятью. Суть этой архитектуры – в особой организации памяти: память физически распределена по различным частям системы, но логически она является общей, так что пользователь видит единое адресное пространство. Система построена из однородных базовых модулей (плат), состоящих из небольшого числа процессоров и блока памяти. Модули объединены с помощью высокоскоростного коммутатора. Поддерживается единое адресное пространство, аппаратно поддерживается доступ к удаленной памяти. При этом доступ к локальной памяти осуществляется в несколько раз быстрее, чем к удаленной.



Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.239.33.139 (0.017 с.)