Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Гиперчувствительность IV (замедленного) типа.Содержание книги Поиск на нашем сайте
Механизм развития. Этот тип опосредуется сенсибилизированными Т-лимфоцитами, которые или непосредственно проявляют цитотоксичность, или путем секреции лимфокинов. Реакции гиперчувствительности IV типа обычно возникают через 24—72 ч после введения антигена сенсибилизированному человеку, что отличает данный тип от I типа гиперчувствительности, который часто развивается в пределах минут. При гистологическом исследовании тканей, в которых протекает реакция гиперчувствительности IV типа, выявляется некроз клеток и выраженная лимфоцитарная инфильтрация. Нарушения, возникающие при гиперчувствительности IV типа. Гиперчувствительность замедленного типа имеет несколько проявлений: • при инфекционных заболеваниях, вызванных факультативными внутриклеточными микроорганизмами, морфологическим проявлением гиперчувствительности замедленного типа является эпителиоидно-клеточная гранулема с казеозным некрозом в центре; т • при тиреоидите Хашимото и аутоиммунном гастрите, связанном с пернициозной анемией, прямое действие Т-клеток против антигенов на клетках хозяина (эпителиальные клетки щитовидной железы и париетальные клетки в желудке) ведет к прогрессивному разрушению этих клеток; • при вхождении антигена в прямой контакт с кожей возникает локальный гиперчувствительный ответ IV типа, участок которого точно соответствует области контакта. Морфологические изменения в органах при гиперчувствительности: • Лимфатические узлы увеличены в размерах, полнокровные. При I—III типах гиперчувствительности количество Т-лимфоцитов уменьшено. В синусах отмечается большое количество макрофагов. Если в ответ на антигенную стимуляцию развиваются преимущественно клеточные иммунные реакции (IV тип гиперчувствительности), то в лимфатических узлах в паракортикальной зоне пролиферируют в основном сенсибилизированные лимфоциты, а не плазмобласты и плазматические клетки. При этом происходит расширение Т-зависимых зон. • Селезенка увеличивается, становится полнокровной. При I—III типах гиперчувствительности на разрезе хорошо видны резко увеличенные большие серовато-розоватые фолликулы. При IV типе гиперчувствительности морфологическая перестройка аналогична изменениям, наблюдаемым в лимфатических узлах в Т-зонах. • Кроме того, в органах и тканях, в которых развивается реакция гиперчувствительности немедленного типа — ГНТ (I, II, III типы), имеет место острое иммунное воспаление. Оно характеризуется быстротой развития, преобладанием альтеративных и экссудативных изменений. При IV типе гиперчувствительности (ГЗТ) лимфоцитарная и макрофагальная инфильтрация в очаге иммунного конфликта являются выражением хронического иммунного воспаления. Вопрос 29 АУТОИММУННЫЕ БОЛЕЗНИ Аутоиммунизация — появление аутоантигенов и аутоантител в организме. Исключение составляют 6 органов: Антигены этих органов и тканей изолированы от лимфоцитов гистофизиологическим барьером. Поэтому иммунологической толерантности к ним со стороны лимфоцитов нет. Вторая группа- действует второй механизм (прекращение толерантности). Это: Третья группа – связана с образованием аутоантигенов вследствие Вопрос 31
Вопрос 32 Факторами, ограничивающими трансплантацию тканей, являются иммунологические реакции против пересаженных клеток и наличие соответствующих донорских органов. При пересадке бессосудистых трансплантантов реакция иммунологического отторжения не появляется, так как отсутствие кровообращения в трансплантанте предотвращает контакт иммунных клеток с антигенами, а для развития иммунного ответа необходимо соприкосновение антигена с клетками иммунной системы Трансплантационные антигены (антигены гистосовместимости). Иммунологическая реактивность против пересаженных клеток может быть направлена против большого количества антигенов на поверхностной мембране клеток. Антигены на эритроцитах: хотя антигены ABO, Rh, MNS и других систем групп крови не являются собственно антигенами гистосовместимости, совместимость между эритроцитами донора и сывороткой реципиента очень важна и при переливаниях крови, и при трансплантации тканей. Антигены на поверхности клеток тканей: • HLA-комплекс; • антигены HLA-комплекса (HLA — человеческий антиген лейкоцитов); • антигены гистосовместимости. У человека главный комплекс гистосовместимости (МНС) — это участок хромосомы, содержащий гены, которые определяют синтез антигенов гистосовместимости — находится на коротком плече 6 хромосомы. Молекулярные классы МНС-региона — молекулы, кодируемые МНС-областью, разделены натри класса: I, II и III. Генетика. — в клетках человека для каждого HLA-локуса имеются два аллеля (альтернативных формы гена), которые кодируют, соответственно, два HLA-антигена в клетке. Человек наследует одну аллель в каждом локусе от каждого родителя. Сложность системы HLA-антигенов объясняется существованием большого количества различных возможных аллелей для каждого локуса. Огромное число возможных комбинаций HLA-антигенов приводит к низкой вероятности того, что два индивидуума будут иметь идентичный тип HLA. Высокая степень совместимости редко наблюдается у двух неродственных людей, поэтому трансплантация органов родственников чаще имеет положительные результат, чем при трансплантации генетически не связанных органов. Другие антигены гистосовместимости — факт наличия иммунологических реакций при пересаживании полностью HLA-совместимых тканей позволяет сделать вывод, что присутствуют другие активные антигены гистосовместимости в клетках, но они еще недостаточно изучены. Механизмы отторжения трансплантанта. При отторжении трансплантанта играют роль и гуморальные, и клеточные механизмы. Гуморальные механизмы. Гуморальные механизмы опосредованы антителами, которые могут присутствовать в сыворотке реципиента перед трансплантацией или развиваться после пересадки чужеродной ткани. Гуморальные факторы повреждают пересаженную ткань путем реакций, которые эквивалентны реакциям гиперчувствительности II и III типов. Взаимодействие антител с антигеном на поверхности пересаженных клеток приводит к некрозу клеток, а накопление иммунных комплексов в кровеносных сосудах активирует комплемент, что приводит к развитию острого некротизирующего васкулита или хронического фиброза интимы с сужением сосудов. Иммуноглобулины и комплемент в таких препаратах можно обнаружить иммунологическими методами. Клеточные механизмы. Клеточные механизмы отторжения вызывают Т-лимфоциты, которые становятся сенсибилизированными к пересаженным антигенам. Эти лимфоциты вызывают повреждение клеток путем прямой цитотоксичности и путем секреции лимфокинов. Повреждение Т-клетками характеризуется некрозом паренхиматозных клеток, лимфоцитарной инфильтацией и фиброзом. Клеточные механизмы в процессе отторжения более важны, чем гуморальные. Клинические типы отторжения трансплантанта. Острейшее отторжение. Молниеносная реакция, протекающая в пределах нескольких минут после трансплантации и характеризующаяся тяжелым некротическим васкулитом с ишемическим повреждением пересаженного органа. Накопление иммунных комплексов и активация комплемента в стенке вовлеченных сосудов могут определяться иммунологическими методами. Острое отторжение наблюдается довольно часто и может протекать от нескольких дней до месяцев после трансплантации. Острое отторжение характеризуется некрозом клеток и нарушением функций органа. При остром отторжении участвуют и гуморальные, и клеточные механизмы. Иммунные комплексы депонируются в мелких сосудах трансплантанта и вызывают острый васкулит, ведущий к ишемическим изменениям. Хроническое отторжение наблюдается в наибольшем количестве пересаженных тканей и вызывает прогрессирующее ухудшение функции органа в течение месяцев или лет. При хроническом отторжении активируется клеточный иммунитет (IVтип гиперчувствительности), что приводит к прогрессивному уничтожению паренхиматозных клеток. В пораженной ткани развивается фиброз с лимфоцитарной инфильтрацией. В некоторых случаях присутствие хронического васкулита указывает на параллельное воздействие антител. Вопрос33 Согласно теории моноклинального происхождения первоначальный канцерогенный агент вызывает мутации одиночной клетки, при делении которой затем возникает опухолевый клон, составляющий новообразование. Моноклональное происхождение новообразований было доказано на примере опухолей из В-лимфоцитов. Теория «опухолевого поля». Канцерогенный агент, воздействуя на большое количество сходных клеток, может вызывать образование поля потенциально неопластических клеток. Новообразование может затем развиться в результате размножения одной или большого количества клеток внутри этого поля. Эта теория объясняет происхождение некоторых новообразований в коже, эпителии мочевыводящих путей, печени, молочной железе и кишечнике. Теория генетических мутаций. Нарушения в геноме могут вызывать неоплазию, если повреждаются регулирующие рост гены. Опухолевая трансформация происходит в результате активации (или дерепрессии) специфических последовательностей ДНК, известных как рострегулирующие гены, или протоонкогены. Эти гены кодируют ряд факторов роста и рецепторов для факторов роста. Теория вирусных онкогенов. Некоторые РНК-вирусы содержат последовательности нуклеиновых кислот, которые являются комплементарными к протоонкогену и могут (при действии обратной транскриптазы) синтезировать вирусную последовательность ДНК, которая является по существу идентичной. Эпигенетическая теория. Согласно эпигенетической теории основное клеточное повреждение происходит не в генетическом аппарате клетки, а в механизме регуляции активности генов, особенно в белках, синтез которых кодируют рострегулирующие гены. Различные уровни активности генов, которые ответственны за дифференцировку тканей, как предполагается, определяются наследуемыми эпигенетическими механизмами. Теория отказа иммунного надзора. Согласно этой теории неопластические изменения довольно часто происходят в клетках организма. В результате повреждения ДНК неопластические клетки синтезируют новые молекулы (неоантигены, опухолевые антигены). Иммунная система организма распознает эти неоантигены как «чужие», что приводит к активации цитотоксического иммунного ответа, который уничтожает неопластические клетки. Клинически обнаруживаемые новообразования возникают только в том случае, если они не распознаются и не разрушаются иммунной системой. Морфогенез опухолей. Многократные толчки и многочисленные факторы. Кнудсен предложил теорию, согласно которой для развития опухоли необходимо два толчка. Первый связан с первой встречей с канцерогенным агентом — этот момент называется инициирование, а канцерогенное вещество, вызывающее это изменение, — инициатор. Второе воздействие, которое стимулирует неопластический рост, называется промоцией, а агент — промотором. Сейчас доказан факт существования этих этапов — многократных толчков (пять и более). Доказано, что очень многие факторы могут вызывать эти толчки и что каждый толчок производит изменения в геноме подвергающейся воздействию клетки, которые передаются потомству (т. е. неопластическому клону).. Период между первым толчком и возникновением клинически определяемой опухоли назван скрытым периодом. Очень важно распознать предопухолевые повреждения, так как при удалении измененной ткани предупреждается развитие опухолей. Несмотря на то что гиперплазия и метаплазия не опасны в плане развития опухоли, постоянное воздействие патогенного фактора может привести к трансформации их в дисплазию, которая имеет высокий риск преобразования в опухоль. Признаки дисплазии. Изменения ядра: • дисплазия характеризуется увеличением ядерно-цитоплазматического отношения; • увеличением содержания хроматина; • нарушение структуры и расположения хроматина (образование крупных глыбок); • нарушения строения ядерной мембраны (утолщение и сморщивание). Изменения цитоплазмы: • цитоплазматические нарушения при дисплазии возникают из-за нарушения нормальной дифференцировки; • увеличение скорости деления клеток; • нарушенное созревание — диспластические эпителиальные клетки сохраняют сходство с базальными стволовыми клетками, несмотря на продвижение их вверх в эпителии, т. е. нормальное дифференцирование (образование кератина) будет нарушено. Эпителиальная дисплазия является предопухолевым состоянием, связанным с повышенным риском возникновения рака. Риск возникновения инвазивного рака зависит от: выраженности дисплазии; продолжительности дисплазии; локализации дисплазии. Различия между дисплазией и раком. Дисплазия и carcinoma in situ отличаются от истинного рака двумя важными свойствами: инвазивностью и реверсивностью. Отсутствие инвазивности: аномальная ткань при дисплазии и carcinoma in situ не проникает через базальную мембрану. Реверсивность: диспластическая ткань может иногда спонтанно возвращаться к нормальному состоянию, а рак является необратимым процессом. Однако тяжелая дисплазия может быть необратима. Диагностика дисплазии. Макроскопическое исследование. Эпителиальная дисплазия, включая carcinoma in situ, является обычно асимптоматической и во многих случаях при макроскопическом исследовании слизистой оболочки патологии не выявляется. Микроскопическое исследование: мазки делаются путем соскабливания эпителия для цитологической диагностики. Микроскопическая оценка ядерных и цитоплазматических изменений в диспластической ткани позволяет поставить диагноз и определить степень выраженности дисплазии. Опухоль – это безудержный неконтролируемый рост количества клеток, приводящий организм к гибели. Кейлоны — это гликопротеиды с молекулярным весом 30-40 тысяч. Они блокируют митотическую активность клетки в определенной фазе. Они обладают органоспецифическим свойством — действует на клетки одного и того же органа. Есть кейлоны печени, почек и т.д. Много исследований проводится в рамках канцерогенеза (опухолевого роста) и роли клеточных органелл. Особое значение придается изменениям состояния ядра клетки — состоянию генома и ядерным белкам (гистонам). Установлено, что изменения генома раковой клетки весьма тонкие. Причем раковая клетка способ-на воспроизводить целый организм (опыты на раковых опухолях почек леопардовых лягушек). Но эти неболь-шие структурные изменения в геноме делают главное: они делают раковую клетку похожей на одноклеточное существо. А это одноклеточное существо теряет способность реагировать на контролирующие импульсы. Оно свободно передвигается по всему организму и в любом месте начинает размножаться, разрушая нормальные клетки и ткани. Что и ведет к гибели всего организма. Статистика заболеваемости опухолями.
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 518; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.210.196 (0.011 с.) |