Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электронное строение органических соединений

Поиск

Характер связей в органических соединениях

Для молекул органических соединений наиболее характерны ковалентные связи. Как известно, атом углерода имеет четыре валентных электрона. В соответствии с его положением в периодической системе элементов (2 период, I группа, порядковый номер 6) углерод прочно удерживает электроны в своем внешнем слое и в то же время не склонен отнимать электроны у других атомов. Поэтому связь атомов углерода с атомами различных элементов и друг с другом осуществляется путем образования обобщенных пар, т.е. при помощи ковалентных связей. Электронные структурные формулы, например, простейших углеводородов – метана и этана – имеют следующий вид (для сравнения рядом с ними приведены обычные структурные формулы):

Н Н Н Н Н Н

.. ½.... ½ ½

Н: C: Н Н¾C¾Н Н: C: C: Н Н¾C¾C¾Н

.. ½.... ½ ½

Н Н Н Н Н Н

 

Рис. 1 Электронная и обычная структурные формулы метана и этана.

 

Атом углерода, как правило, образует четыре ковалентные связи, т.к. только в этом случае у него создается устойчивый восьмиэлектронный внешний слой. Этим объясняется то, что в большинстве случаев валентность углерода равна четырем. В молекуле метана углерод образует ковалентные связи с четырьмя атомами водорода, у каждого из которых создается устойчивый двухэлектронный слой. В молекуле этана одна из электронных пар осуществляет ковалентную связь между двумя углеродными атомами.

Из сопоставления электронных формул метан и этана с обычными структурными формулами следует, что каждая простая связь между атомами осуществляется одной обобщенной электронной парой. Соответственно в веществах с кратными связями двойная связь возникает вследствие образования соединяющимися атомами двух, а тройная – трех обобщенных электронных пар. Электронные структуры и обычные структурные формулы, например, этилена и ацетилена имеют вид:

 

Н Н

.... Н Н

C::C >C = C< Н: C:::C: Н H¾C º C¾H

.... Н Н

Н Н

Н2С = СН2 НС º СН

 

Рис. 2. Электронная и обычная структурные формулы метана и этана.

 

Состояние валентных электронов в атоме углерода

Из курса неорганической химии известно, что электронная структура невозбужденного атома углерода может быть выражена формулой 1s22s22p2, т.е. во втором (внешнем) электронном слое у него два спаренных (с противоположными спинами) s- электрона и только два неспаренных p-электрона, которые могут участвовать в образовании ковалентных связей. Следовательно, углерод должен был бы проявлять валентность, равную двум, однако в большинстве своих соединений он четырехвалентен – образует четыре ковалентные связи. Это объясняется тем, что при затрате некоторой энергии происходит "расспаривание" 2s- электронов: один из них переводится на свободную орбиту подуровня 2p, и атом переходит в возбужденное состояние (2s22p2 2s12p3), или графически:

          2p             2p      
    2s             2s          
С             C*              

нормальное состояние возбужденное состояние

Таким образом, у атома углерода, участвующего в образовании четырех ковалентных связей, во внешнем электронном слое, как было показано ранее, четыре валентных электрона. Состояние их не одинаково. Один из них (s- электрон), двигаясь вокруг ядра образует шаровое облако (рис.3), подобное облаку электрона в атоме водорода (s-состояние электрона). Облака трех других электронов (p- электроны) имеют форму объемных восьмерок (гантелей) с "перетяжкой" в области ядра и ориентированных в трех взаимно перпендикулярных направлениях (p- состояния электрона).

Когда углерод, проявляя валентность четыре, соединяется простыми (ординарными) связями с четырьмя другими атомами, электронная плотность облаков всех четырех валентных электронов перераспределяются. Происходит гибридизация одного s- состояния и трех p- состояний электронов. В результате во внешнем электронном слое связанного углеродного атома возникают четыре одинаковых гибридных состояния.

 

 

а б в г д

 

Рис. 3. Негибридизованные 2р(x y z) (а, б, в) и 2s орбитали (г) атома

углерода и орбитали атома углерода в состоянии sp 3-гибриди-

зации (д).

 

Занимая эти состояния, валентные электроны образуют гибридные облака, имеющие вид деформированной восьмерки (Рис.3 д), большая часть которой направлена от ядра по линии связи с другим атомом.

Такое состояние валентных электронов атома углерода называют sp3- гибридизацией (первое валентное состояние углерода). Все четыре гибридных облака имеют определенную направленность в пространстве под углом 109о28' друг к другу, что соответствует о тетраэдрической направленности связей атома углерода.

Образование простых связей

Как показано ранее, простая ковалентная связь между атомами образуется парой обобщенных электронов. Образование этой пары в свете представлений квантовой механики заключается во взаимном перекрывании облаков электронов, осуществляющих связь; перекрывание происходит при сближении атомов на определенное расстояние. Между этими атомами на прямой, соединяющей их центры, возникает наибольшая электронная плотность (область максимального перекрывания облаков). К этой области повышенной плотности отрицательного заряда притягиваются положительно заряженные ядра атомов, следствием чего и является возникновение химической cвязи.

 
 

Рис. 4. Различные виды перекрывания орбиталей при образовании

s-связей: а- перекрывания 1s - орбиталей атомов водорода (Н — Н);

б- перекрывание 1s-орбитали атома водорода с гибридной орбиталью атома углерода (С—Н); в- перекрывание двух гибридных орбиталей атомов углерода (С—С).

 

На рис. 4 представлены схемы образования некоторых связей. Простая связь между атомами водорода и углерода H-C (или H: C) является следствием перекрывания шарообразного облака электрона атома водорода и гибридного облака одного из валентных электронов атома углерода. Простая связь между двумя углеродными атомами C—C (или C: C) осуществляется вследствие перекрывания двух гибридных облаков углеродных атомов.

Связи указанного типа, в которых максимальное перекрывание электронных облаков осуществляется на линии между центрами атомов, называются s-связями, а электроны, участвующие в их образовании, s - электронами. Каждая ковалентная связь характеризуется определенным расстоянием между ядрами соединенных атомов. Это расстояние называется межъядерным расстоянием, или длиной связи. Длина простой связи C—C составляет 1,54 А (0,154 нм).

 

Образование двойных связей

Двойная связь, например связь C=C, образована двумя обобществленными электронными парами C :: C. Но состояние каждой из них не одинаково. Например, в молекуле этилена H2C=CH2 при образовании двойной связи в каждом из атомов углерода образуется лишь три гибридных состояния - в результате гибридизации s- состояния и двух p- состояний (sp2- гибридизация). В этом случае у каждого углеродного атома одно из p- состояний не участвует гибридизации и остается неизменным.

Три гибридных облака каждого из углеродных атомов этилена участвуют в образовании трех s-связей (второе валентное состояние углерода). В этилене всего пять s-связей (четыре C—H и одна С—С). Все они расположены в одной плоскости, каждая под углом 120о к соседней связи (рис. 5):

 
 

Рис. 5. Перекрывание двух негибридизованных 2р-обриталей в молекуле этилена: а- объемное изображение перекрывающихся негибридизованных 2р-орбиталей; б- схематическое изображение этих орбиталей на плоскости.

 

Таким образом, одна из электронных пар двойной связи между атомами углерода осуществляют обычную s-связь, вторая электронная пара образуется электронами не участвующими в гибридизации и сохранившими p-состояние. Облака этих электронов, сохранившие форму объемных восьмерок, направлены перпендикулярно к плоскости, в которой расположены s-связи молекулы этилена и перекрываются над и под этой плоскостью.

Связь, осуществляемую такой парой электронов, называют p-связью, а образующие ее электроны - p- электронами. Как показано на рис. 6, p-связь возникает в плоскости, перпендикулярной плоскости расположения s-связей.

Двойная связь, являющаяся сочетанием s- и p-связей, по характеру существенно отличается от простой связи. Центры углеродных атомов в этилене находятся на расстоянии 1,34 А (0,134 нм), т.е. длина двойной связи несколько меньше, чем простой.

 

Образование тройных связей

Тройная связь CºC образована тремя парами обобществленных электронов C ::: C. Состояние этих пар не одинаково, так же как в случае двойной связи. Одна из них представляет собой s-связь, две другие - p-связи. Поясним это на примере ацетилена HCºCH. При образовании тройной связи в каждом углеродном атоме гибридизируется одно s- и одно p- состояния электронов (sp-гибридизация). У каждого углеродного атома образуется два гибридных состояния, а два p- состояния не участвуют в гибридизации и сохраняют свою конфигурацию (рис. 6).

 
 

Рис. 6. Перекрывание четырех негибридизованных 2р-орбиталей в молекуле ацетилена: а- объемное изображение четырех перекрывающихся 2р-орбиталей; б- схематическое изображение этих орбиталей в двух взаимно перпедикулярных плоскостях.

 

Два гибридных облака каждого атома С в ацетилене участвуют в образовании двух s-связей (третье валентное состояние углерода). В ацетилене

всего три s-связи (одна C—C и две C—H), расположенные на одной прямой. В результате же перекрывания облаков электронов, сохранивших p-состояние, возникают две p-связи, образованны и двух взаимно перпендикулярных плоскостей (рис. 6). Тройная связь в ацетилене имеет длину 1,20 А (0,120 нм), т.е. углеродные атому сближены еще больше, чем в случае двойной связи.

Изомерия

Еще в 1814 г. французский ученый Гей-Люссак установил, что некоторые вещества при одном и том же качественном и количественном составе обладают различными физическими и химическими свойствами. Например, состав C2H6O и, соответственно, молекулярный вес 46,07 имеют два различных изомерных органических вещества: этиловый спирт – жидкость, кипящая при 78,4 оС, смешивающаяся с водой в любых соотношениях, и диметиловый эфир – газ, почти не растворимый в воде и существенно отличающийся от этилового спирта по химически свойствам.

Это явление, заключающееся в существовании нескольких химических соединений с одинаковым качественным и количественным составом, но отличных по физическим и химическим свойствам, было названо изомерией. Указанные соединения получили название изомеров.

Сущность явления изомерии была раскрыта в теории Бутлерова. Выяснилось, что изомерия обусловлена различным химическим строением, т.е. различием в порядке соединения атомов в молекулах при одном и том же составе и молекулярном весе веществ.

Для каждого из трех простейших углеводородов (метана, этана и пропана) возможно по одной структурной формуле:

H H H H H H

ï ï ï ï ï ï

H¾C¾H; H¾C¾C¾H; H¾C¾C¾C¾H.

ï ï ï ï ï ï

H H H H H H

В молекуле пропана четвертый углеродный атом может быть присоединен либо к одному из двух крайних углеродных атомов, либо к среднему. Цепь из четырех атомов углерода, как видим, дает начало двум изомерным молекулам состава C4H10 с различными углеродными скелетами:

H H H H H H H

ï ï ï ï ï ï ï

H¾C¾C¾C¾C¾H (1), H¾C¾¾C¾¾C¾H (2)

ï ï ï ï ï ï ï

H H H H H H¾C¾H H

ï

H

изображаемым сокращенно: CH3—CH2—CH2—CH3 (1), CH3—CH—CH3 (2).

ï

CH3

Первый изомер углеводорода бутана C4H10 имеет прямую (нормальную) цепь. Второй изомер – изобутан – разветвленную цепь атомов углерода.

Для углеводорода пентана C5H12 различия в последовательности связи углеводородных атомов приводят к образованию трех изомеров:

нормальный пентан изопентан

СН3—СН2—СН2—СН2—СН3 СН3—СН—СН2—СН3

СН3 ½

½ СН3

тетраметилметан СН3—С—СН3

½

СН3

С увеличением числа атомов углерода в молекуле резко возрастает число изомеров. Известны все 9 структурных изомерных гептанов C7H16, предсказанных теорией химического строения. Для углеводородов C10H22 возможно 75 структурных изомеров, для C11H24 159 изомеров, для C12H26 802 изомера, для C14H30 1858 изомеров, для – C20H42 366319 изомеров.

Явление изомерии – одна из важнейших причин существования большого числа органических соединений.

Свойства органических соединений зависят от присутствия – функциональных групп (—ОН у спиртов; >С=О у альдегидов и кетонов; —СООН у карбоновых кислот; —NH2 у аминосоединений; F, Cl, Br, J у галогенпроизводных и так далее). Функциональные группы обуславливают важнейшие свойства и прежде всего химическое поведение молекул. Изучение спектров молекул показало, что функциональные группы имеют характеристические частоты, мало отличающиеся для отдельных представителей каждого класса органических соединений.

Изомерия характерна не только для линейных, но и для циклических молекул:

СН3

Циклогексан СН2 метилциклопентан ½

СН2 СН2 СН

СН2 СН2

СН2 СН2

СН2 СН2—СН2

Структурная изомерия может иметь место и при одинаковом углеродном скелете, если функциональные группы занимают различное положение в молекуле. Порядок связи атомов в молекуле пропана выражается одной структурной формулой: CH3—CH2—CH3. Замещение одного из атомов водорода пропана гидроксильной группой приводит к получению двух изомерных спиртов:

CH3—CH2—CH2OH (1) CH3—CHOH—CH3 (2)

пропиловый спирт изопропиловый спирт

Эти структурные изомеры отличаются положением в молекуле функциональной гидроксильной группы, характерной для класса спиртов.

Взаимное влияние атомов

Химическое поведение – реакционная способность одного и того же атома, изменяющаяся в различных молекулах под влиянием непосредственно связанных с ним атомов, а также под влиянием отдаленных атомов и атомных групп.

Так, например, атом водорода в соединении с хлором, кислородом и азотом (H—Cl, H—O—H, N—) проявляет различные свойства. Водород соляной кислоты сильно поляризован (протонирован) и легко замещается металлами, водород воды менее сильно поляризован и поэтому замещается только активными металлами и, наконец, водород аммиака очень слабо протонирован и может быть замещен лишь самыми активными металлами. Различное влияние атомов Cl, O и N на процесс протонизации – причина различной активности атомов водорода в этих молекулах.

Влияние атомов кремния и углерода в молекулах тетрахлоридов- кремния SiCl4 и углерода CCl4 проявляется в различном химическом поведении в этих соединениях атомов хлора. Так, при действии воды в молекуле SiCl4 атомы хлора очень легко замещаются на гидроксильные группы, тогда как в молекуле ССl4 обмена атомов хлора на гидроксильные группы не происходит.

Атом каждого элемента влияет определенным образом на химическое поведение других атомов, составляющих молекулу, и вместе с тем, сам подвергается влиянию всей молекулы в целом. Теория химического строения не только раскрыла единство части и целого в молекуле и в химическом взаимодействии непосредственно связанных друг с другом атомов, но и указала на существование в молекулах химического влияния атомов, непосредственно не связанных друг с другом. Например, в молекулах хлорэтана (хлористого этила) CH3—CH2—Cl и хлорэтилена (хлористого винила) CH2=CH—Cl различное влияние на атом хлора этильной (CH3—CH2—) и винильной (CH2=CH—) групп обуславливает и различную его реакционную способность. Если в хлорэтане атом хлора весьма подвижен и обладает высокой реакционной способностью, то в молекуле хлорэтилена атом хлора инертен.

Структурные формулы выявляют главные, непосредственные связи и сильные химические взаимодействия атомов в молекуле, характеризуя основные особенности ее химического строения и реакционной способности.

 

Таутомерия

Бутлеров рассматривал химическую связь как особый вид движения атомов. Он полагал, что молекулы находятся в постоянном движении и превращении, подвергаясь многообразным внутренним перестройкам. В свете теории Бутлерова представления об устойчивости и неустойчивости изомерных форм молекул являлся чисто формальным, т.к. в некоторых случаях изомерные молекулы настолько легко переходят друг в друга, что оба изомера находятся в состоянии подвижного равновесия

СН3—С—СН2—СООС2Н5 <=> СН3—С=СН—СООС2Н5,

½½ ½

О ОН

кетонная форма енольная форма

ацетоуксусный эфир

а в других, наоборот, равновесие между изомерами сильно или почти полностью сдвинуто в сторону одного из них

СН3 СН3 СН3 СН3

СH ¾¾¾¾® СBr

½ ½

СН2Br СН3.

Взаимные превращения изомеров могут осуществляться без какого-либо внешнего воздействия, и, наоборот, иногда требуются интенсивные внешние воздействия (катализаторы) для того, чтобы вызвать обратимые переходы изомеров друг в друга.

Распространенное в органической химии явление, заключающееся в существовании двух или нескольких изомерных форм молекул, находящихся в состоянии динамического равновесия, называется таутомерией. В настоящее время установлено, что между явлениями изомерии и таутомерии нет резкой границы. Исследования показали, что при одних внешних воздействиях вещества могут быть вполне устойчивыми изомерами, тогда как при других – таутомерами.



Поделиться:


Последнее изменение этой страницы: 2017-02-22; просмотров: 239; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.126.241 (0.008 с.)