Движение веществ из меньшей концентрации в большую 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Движение веществ из меньшей концентрации в большую



Однако клеточные мембраны располагают и механизмами перемещения веществ через себя от меньшей их концентрации к большей. Среди белков мембраны имеются белковые вещества, работа которых состоит в перемещении различных веществ с одной стороны мембраны на другую. Они называются транспортными ферментами. Такой транспортный фермент образует с переносимым веществом промежуточное соединение; последнее проходит сквозь мембрану, расщепляется затем на исходные части, после чего фермент возвращается назад, а перенесенное вещество остается по другую сторону мембраны.. В отличие от диффузного, пассивного, ферментативный транспорт нуждается в затрате энергии. Именно благодаря такому активному транспорту ионов клетки эпидермиса корней способны всасывать из почвы нужные растению неорганические вещества и затем передавать их по растению от клетки к клетке.

При химических или физических изменениях во внешней и внутренней среде клеточные мембраны изменяют свою проницаемость, а также степень и сам характер ее избирательности. На этом основываются механизмы регуляции движения веществ в клетку и из клетки. Изменение проницаемости мембран для питательных веществ отражается на интенсивности обменных процессов в клетке, на характере протекающих в ней синтезов, на всей ее жизнедеятельности. В изменении проницаемости мембран для ионов натрия и калия состоит механизм распространения клеточного возбуждения — возникновения и перемещения биотока.(клетки животных и человека- возникновение нервного импульса) К поверхности мембраны присоединено большое количество катионов, главным образом ионов калия. Поэтому она несет снаружи положительный заряд. Под влиянием раздражителей ионы калия отщепляются от участка, подвергшегося воздействию, заряд участка падает и он становится электроотрицательным по отношению к соседним участкам мембраны. Эта электроотрицательность является, в свою очередь, раздражителем для соседних участков, тем же путем снимая их заряд, деполяризуя их. Волна электроотрицательности распространяется по мембране — это и есть биоток. Затем ионы калия снова садятся на мембрану, придавая ей исходный заряд, — за волной деполяризации следует волна восстановления. Поверхности плазмодесм, проходящих сквозь клеточные стенки и соединяющих цитоплазму соседних клеток, тоже образованы такими мембранами. Биоток движется и по ним, распространяясь от клетки к клетке. Биотоки растительной клетки пока еще мало изучены. Однако ясно, что они являются способом сигнализации, используемым в растительной клетке для пуска в ход одних химических реакций и торможения других. Дело в том, что все химические процессы, протекающие в клетке и составляющие сущность ее жизнедеятельности, идут с участием биологических катализаторов — ферментов. Каждая реакция возможна лишь тогда, когда фермент, пускающий ее в ход, активен. Большинство ферментов становятся активными под действием тех или иных неорганических катионов: K+, Na+, Ca2+, Mg2+, Mn2+. Биоток, меняя проницаемость мембран для заряженных веществ, создает условия для их проникновения сквозь мембраны и контакта с ферментами. Тем самым биоток включает в действие те или иные ферменты и этим регулирует, направляет обмен веществ в клетке. Регуляция обмена веществ биотоками — это лишь один из многих способов регуляции внутриклеточного метаболизма.

Сказанное о проницаемости поверхностной мембраны клетки — плазмалемме — относится и к другим внутриклеточным мембранам, в том числе к тем, из которых построены многие органоиды клетки.

Цитоплазма

Термин «цитоплазма» был предложен Э. Страсбургером (1882) Цитоплазма (от цито... и греч. plásma — вылепленное, оформленное), внеядерная часть протоплазмы клетки, ограниченная клеточной мембраной или внеядерная часть протоплазмы животных и растительных клеток. Состоит из гиалоплазмы, в которой содержатся органоиды и др. включения. Цитоплазма представляет собой водянистое вещество – цитозоль (90 % воды), в котором располагаются различные органеллы, а также питательные вещества (в виде истинных и коллоидных растворов) и нерастворимые отходы метаболических процессов Цитоплазма является динамической структурой. Органеллы движутся, а иногда заметен и циклоз – активное движение, в которое вовлекается вся протоплазма.

Цитоплазма сложно структурирована. В цитоплазме находятся различные органоиды (органеллы) — структуры, каждая из которых выполняет определенные физиологические и биохимические функции. Важнейшими органоидами цитоплазмы являются митохондрии, эндоплазматический ретикулум (эндоплазматическая сеть), аппарат Гольджи, рибосомы, пластиды, лизосомы. У подвижных клеток (зооспоры и гаметы водорослей, сперматозоиды хвощей, папоротников, саговников, некоторые одноклеточные и колониальные водоросли) имеются органоиды движения — жгутики.

Все химические реакции, протекающие в клетке, можно разделить на две группы. В результате одних те или иные вещества распадаются на более мелкомолекулярные. В результате других из мелкомолекулярных веществ синтезируются вещества с более крупными молекулами. Молекула любого вещества состоит из атомов, которые удерживаются между собой химическими связями, т. е. тем или иным количеством сконцентрированной потенциальной химической энергии. Когда молекула дробится, связи рвутся и их химическая энергия освобождается. Для синтеза, т. е. для образования более крупной молекулы из мелких, нужно создать новые химические связи, В них необходимо вложить некоторую порцию энергии. Напротив, реакции распада в конечном итоге идут с освобождением энергии, так как при них связи между атомами рвутся. Биологический смысл реакций распада, идущих в клетке, состоит в том, что при них освобождается химическая энергия, используемая затем клеткой для реакций синтеза и для производства иных видов работы (электрической, механической, работы по транспорту веществ). Так как клетка всю свою жизнь синтезирует различные вещества, то ей приходится непрерывно расщеплять другие вещества. Освобождающаяся энергия используется для синтезов не сразу. Сначала она запасается путем образования специальных веществ — аккумуляторов химической энергии — аденозинтрифосфорной кислоты (АТФ) и родственных ей соединений. В нужный момент и в соответствующей точке клетки АТФ расщепляется и отдает энергию для синтеза необходимого клетке вещества. Все химические реакции, протекающие в клетке, — и синтеза и распада — осуществляются с помощью ферментов. Ферменты — белковые вещества, ускоряющие течение реакций. Ускорение это настолько велико, что без ферментов подобные реакции вообще были бы невозможны в клетке. Известны случаи, когда благодаря ферменту реакция ускоряется в 1011 раз. Это значит, что реакция, заканчивающаяся с участием фермента в течение 0,01 сек, без него протекала бы 31 год. Понятно, что такие реакции без фермента были бы просто нереальными. Кроме того, благодаря ферментам течение химических реакций в клетке управляемо, регулируемо. Активность ферментов в клетке меняется в соответствии с ее потребностью в определенном веществе или в энергии, т. е. в конечном результате работы этих самых ферментов. Когда появляется потребность в каком-то веществе, включаются в действие или заново синтезируются те ферменты, благодаря которым оно образуется. Образование веществ, освобождение и запасание энергии — это итог последовательных реакций, результат работы целой цепи ферментов. Все структуры живых частей клетки построены именно из ферментов и из веществ, скрепляющих эти ферменты. При этом ферменты, участвующие в смежных, последовательно протекающих реакциях, и расположены рядом. Они передают молекулы превращаемых ими веществ друг другу, как по конвейеру, причем каждый из них совершает над молекулой свою рабочую операцию.

Часть цитоплазмы, в которую погружены органоиды и которая пока что представляется бесструктурной, называется основным веществом цитоплазмы или гиалоплазмой. В гиалолазма протекает ряд жизненно необходимых химических процессов, в ее состав входят многие белки-ферменты, при помощи которых эти процессы осуществляются.

В гиалоплазме содержатся ферменты, расщепляющие молекулы глюкозы на более простые молекулы пировиноградной кислоты. Освобождающаяся при этом энергия запасается путем образования молекул АТФ. Тот же процесс протекает и в клеточном ядре. Однако основная масса энергии добывается в особых органоидах цитоплазмы — митохондриях, так как там происходит более глубокое расщепление веществ.

Структура растительной клетки. Вверху — гранулярная эндоплазматическая сеть в цитоплазме развивающегося корневого волоска редиса. Электронная микрофотография (Увел. х103 000) М. Ф. Даниловой: эс — каналы эндоплазматической сети; р — рибосомы; м — митохондрия. Внизу слева — митохондрия в развивающемся корневом волоске редиса. Электронная микрофотография (Увел. х85 000): м — митохондрия; об — оболочка; гр — гребни; пл — плазмалемма (под ней видна часть оболочки клетки); эс — каналы эндоплазматической сети, на внешних поверхностях которых видны рибосомы; р — свободные рибосомы в цитоплазме. Внизу справа — аппарат Гольджи в цитоплазме развивающегося корневого волоска редиса. Электронная микрофотография (увел. х52 000) М. Ф. Даниловой: аг — аппарат Гольджи, видны срезы плоских мешочков и пузырьков.

Митохондрии


Вверху и в середине — вид продольного среза через митохондрию (вверху — митохондрия из эмбриональной клетки кончика корня; в середине — из клетки взрослого листа элодеи). Внизу — трехмерная схема, на которой часть митохондрии срезана, что позволяет видеть ее внутреннее строение. 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — кристы; 4 — матрикс.

Эукариотические клетки содержат энергетические станции - митохондрии. Эти палочковидные,, нитевидные или шаровидные органеллы с диаметром около 1 мкм и длиной около 7 мкм имеют наружную гладкую мембрану и внутреннюю мембрану, образующую многочисленные складки - кристы. Тонкое строение митохондрий было выявлено с помощью электронного микроскопа. Митохондрии ограничены двумя мембранами - внешней и внутренней. Толщина их около 8 нм. Между мембранами имеется пространство шириной около 10 - 20 нм. Характерная черта внутренней мембраны - способность образовывать выпячивания. Они имеют вид плоских гребней - крист. Расстояние между мембранами в кристе составляет около 10-20 нм. У простейших, одноклеточных водорослей в некоторых клетках растений и животных выросты внутренней мембраны имеют вид трубочек диаметром около 50 нм. Это так называемые трубчатые кристы Со стороны матрикса можно увидеть грибовидные образования - АТФ-сомы. Их может быть до 400 на 1 мкм. Они являются ферментами, образующими молекулы АТФ

В кристы встроены ферменты, участвующие в преобразовании энергии питательных веществ, поступающих в клетку извне, в энергию молекул АТФ. Складчатость внутренней мембраны увеличивает поверхность, на которой размещаются ферменты, синтезирующие АТФ. Количество крист в митохондрии и количество самих митохондрий в клетке тем больше, чем больше энергетических трат осуществляет данная клетка. В летательных мышцах насекомых каждая клетка содержит несколько тысяч митохондрий. Меняется их количество и в процессе индивидуального развития (онтогенеза): в молодых эмбриональных клетках они более многочисленны, чем в клетках стареющих. Обычно митохондрии скапливаются вблизи тех участков цитоплазмы, где возникает потребность в АТФ, образующейся в митохондриях

Внутреннее пространство митохондрий заполнено гомогенным веществом, носящим название матрикса. Вещество матрикса имеет более плотную консистенцию, чем окружающая митохондрию гиалоплазма. В матриксе выявляются тонкие нити ДНК и РНК, а также митохондриальные рибосомы, на которых синтезируются некоторые митохондриальные белки.

Митохондрии представляют собой окруженные двойной мембраной органеллы, специализирующиеся на синтезе ATP - путем транспорта электронов и окислительного фосфорилирования. Хотя они имеют свою собственную ДНК и аппарат белкового синтеза, большинство их белков кодируется клеточной ДНК и поступает из цитозоля. Более того, каждый поступивший в органеллу белок должен достичь определенного субкомпартмента, в котором он функционирует. В митохондриях имеется четыре субкомпартмента: митохондриальный матрикс, внутренняя мембрана, межмембранное пространство и внешняя мембрана, обращенная к цитозолю.

Немногие белки, которые кодируются собственным геномом митохондрий, расположены в основном во внутренней мембране. Они обычно образуют субъединицы белковых комплексов, другие компоненты которых кодируются ядерными генами и поступают из цитозоля. Образование таких гибридных агрегатов требует сбалансирования синтеза этих двух типов субъединиц; каким образом координируется синтез белка на рибосомах разных типов, разделенных двумя мембранами, остается загадкой.

Митохондрии характерны за малым исключением для всех эукариотических клеток как аутотрофных (фотосинтезирующие растения), так и гетеротрофных (животные, грибы) организмов. Их основная функция связана с окислением органических соединений и использованием освобождающейся при распаде этих соединений энергии в синтезе молекул АТФ

Хондриом клетки (совокупность митохондрий) может иметь различную композицию в зависимости от энергетических потребностей клетки. В простейшем (и чаще встречающемся) случае он может быть представлен множеством разрозненных небольших митохондрий, функционирующих независимо друг от друга и снабжающих АТФ небольшие участки цитоплазмы. В других случях длинные и разветвленные митохондрии могут энергетически обеспечивать отдаленные друг от друга участки клетки. Вариантом такой протяженной системы может быть хондриом типа митохондриального ретикулума, который встречается как у одноклеточных, так и у многоклеточных организмов.

Дыхание(прочитать). Работа митохондрий тесно связана с процессами, идущими в гиалоплазме, где протекают первые этапы расщепления глюкозы и других веществ до пировиноградной кислоты. В митохондриях же протекает дальнейшее ее расщепление. Пировиноградная кислота проникает в митохондрии и здесь ступенчато, шаг за шагом, окисляется до углекислого газа и воды, причем одновременно потребляется кислород. Это и есть внутриклеточное дыхание, при котором клетка, расщепляя и окисляя вещества, добывает очень много энергии, которую она потом может использовать для самых разных своих нужд.

Первый этап расщепления молекулы глюкозы, во время которого она дробится пополам и который протекает в гиалоплазме, дает клетке всего лишь две молекулы АТФ.

В результате второго этапа, приводящего к полному «сгоранию» глюкозы, образуется еще 36 молекул АТФ. Поэтому митохондрии по своей функции — это силовые станции клетки, машины для добывания основного количества энергии. Само расщепление продуктов распада глюкозы происходит в матриксе митохондрии, АТФ же образуется благодаря реакциям, разыгрывающимся на внутренних ее мембранах, в состав которых входят дыхательные ферменты и ферменты, обеспечивающие образование АТФ. Количество крист в митохондриях может быть различным. Чем их больше, тем выше биохимическая активность митохондрий.

Глюкозе - вещество, расщепляя которое клетка добывает энергию. Глюкоза является центральным, но не единственным из таких веществ. Молекула ее имеет остов из шести атомов углерода, соединенных между собой. В результате длинной и сложной цепи реакций ее молекула дробится, окисляется и, в конце концов, расщепляется на шесть молекул неорганического вещества — углекислого газа (СО,), каждая молекула которого содержит лишь один атом углерода, причем он предельно окислен. Сложив все последовательные реакции окисления глюкозы и исключив при этом все промежуточные продукты, можно получить суммарную реакцию этого процесса:

C6H12O6 + 6O2 -> 6CO2+6H2O+энергия

глюкоза + кислород -> углекислый газ + вода

Крахмал легко превращается в глюкозу, после чего она подвергается вышеописанному расщеплению. Белки и жиры дают различные органические кислоты, которые превращаются в промежуточные продукты распада глюкозы и далее окисляются таким же образом, как последняя, и с помощью тех же ферментов.

Полное биологическое окисление органического вещества подобно его сгоранию. В обоих случаях результатом являются углекислый газ, вода и выделяющаяся энергия. Однако при горении эта энергия выделяется в виде тепла, причем сразу полностью; при биологическом окислении энергия химических связей освобождается порциями, и основная ее часть связывается, переходя в энергию фосфатной химической связи АТФ. В итоге клетка получает концентрат энергии в такой форме, которая затем в нужный момент и в соответствующей точке может использоваться для создания новых химических связей, для синтеза новых веществ, а также для производства других видов работы — электрической, механической, а также работы по транспорту веществ из среды в клетку, из клетки в среду и от клетки к клетке.

Чем активнее жизнедеятельность клетки, тем больше у нее потребность в энергии и тем больше в ней митохондрий. Они и в пределах одной и той же клетки могут быть распределены неравномерно: их больше в той части клетки, которая в данный момент работает активнее.

Митохондрии способны синтезировать часть тех веществ, из которых состоят они сами. Благодаря этому митохондрии могут размножаться.



Поделиться:


Последнее изменение этой страницы: 2017-02-19; просмотров: 307; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.183.137 (0.017 с.)