Клеточные стенки грибов состоят из хитина и глюканов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Клеточные стенки грибов состоят из хитина и глюканов.



. Включения дополнительных полисахаридов имеют большое таксономическое значение.

Клеточные стенки высших растений построены в основном из целлюлозы, гемицеллюлозы и пектина. В них существуют отверстия — плазмодесмы, через которые осуществляется контакт соседних клеток и обмен веществами между ними. Растительные клеточные стенки выполняют целый ряд функций: Они обеспечивают жесткость клетки для структурной и механической поддержки, придают форму клетке, направление ее роста и в конечном счете морфологию всему растению. Клеточная стенка также противодействует тургора, т.е. осмотическому давлению, когда дополнительное количество воды поступает в растения. Клеточные стенки защищают против патогенов, проникающих из окружающей среды, и запасают углеводы для растения. Растительные клеточные стенки строятся прежде всего с углеводного полимера целлюлозы.

Плазмалемма

Под оболочкой находится цитоплазма. Самый наружный ее слой, примыкающий к оболочке, — поверхностная клеточная мембрана — плазмалемма. Она представляет собой комбинацию слоев жироподобных и белковых молекул. Такие мембраны называются липопротеиновыми («липос» — жир, «протеин» — белок). Мембрана подобной конструкции отграничивает цитоплазму от вакуолей, эта мембрана называется тонопластом. Многие органоиды клетки построены из липопротеиновых мембран. Однако в каждом случае мембрана построена из жироподобных веществ (липидов) и белков, присущих именно данной мембране. Качественное разнообразие липидов и особенно белков очень многообразно, отсюда огромное разнообразие мембран, отличающихся по свойствам, и в пределах одной клетки, и в разных клетках.

Плазматические мембраны – это липопротеиновые структуры. Липиды спонтанно образуют бислой, а мембранные белки «плавают» в нём, словно острова в океане. В мембранах присутствуют несколько тысяч различных белков: структурные, переносчики, ферменты и другие. Предполагают, что между белковыми молекулами имеются поры, сквозь которые могут проходить гидрофильные вещества (непосредственному их проникновению в клетку мешает липидный бислой). К некоторым молекулам на поверхности мембраны подсоединены гликозильные группы, которые участвуют в процессе распознавания клеток при образовании тканей.Разные типы мембран отличаются по своей толщине (обычно она составляет от 5 до 10 нм).

Функции:

1барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.

2. транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

Существуют следующие механизмы транспорта веществ через мембрану:

- диффузия (газы, жирорастворимые молекулы проникают прямо через плазматическую мембрану); при облегчённой диффузии растворимое в воде вещество проходит через мембрану по особому каналу, создаваемому какой-либо специфической молекулой;

- осмос (диффузия воды через полунепроницаемые мембраны);

- активный транспорт (перенос молекул из области с меньшей концентрацией в область с большей, например, посредством специальных транспортных белков, требует затраты энергии АТФ);

- при эндоцитозе мембрана образует впячивания, которые затем трансформируются в пузырьки или вакуоли. Различают фагоцитоз – поглощение твёрдых частиц (например, лейкоцитами крови) – и пиноцитоз – поглощение жидкостей;

- экзоцитоз – процесс, обратный эндоцитозу; из клеток выводятся непереварившиеся остатки твёрдых частиц и жидкий секрет.

Первые два процесса в отличие от остальных не требуют дополнительной энергии.

 

 

3. матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;

4. механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.

5. энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

6. рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

7. ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

8. осуществление генерации и проведения биопотенциалов.

9. С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

10. маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Обмен веществ с внешней средой Плазмалемма регулирует вход веществ в клетку и выход их из нее, обеспечивает избирательное проникновение веществ в клетку и из клетки. Скорость проникновения сквозь мембрану разных веществ различна.

Хорошо проникают через нее вода и газообразные вещества. Легко проникают также жирорастворимые вещества, — благодаря тому, что она имеет липидный слой.

Липидный слой мембраны пронизан порами. Это позволяет проникать сквозь мембрану веществам, нерастворимым в жирах. Поры несут электрический заряд, поэтому проникновение через них ионов не вполне свободно. При некоторых условиях заряд пор меняется, и этим регулируется проницаемость мембран для ионов. Однако мембрана неодинаково проницаема и для разных ионов с одинаковым зарядом, и для разных незаряженных молекул близких размеров. В этом проявляется важнейшее свойство мембраны — избирательность ее проницаемости: для одних молекул и ионов она проницаема лучше, для других хуже.



Поделиться:


Последнее изменение этой страницы: 2017-02-19; просмотров: 365; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.200.49.193 (0.009 с.)