Цифро-аналоговые преобразователи. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Цифро-аналоговые преобразователи.



В большинстве случаев получаемый непосредственно от источника информации сигнал оказывается представленным в форме непрерывно меняющегося по своему значению напряжения либо тока. Таков, в частности, характер электрического сигнала, соответствующего телефонным, телевизионным и другим видам сообщения. Для передачи таких сообщений по линии связи или для их обработки (например, при отфильтровании помех) могут быть использованы две формы: аналоговая или цифровая. Аналоговая форма предусматривает оперирование со всеми значениями сигнала, цифровая форма с отдельными его значениями, представленными в форме кодовых комбинаций.

Преобразование сигналов из аналоговой формы в цифровую выполняется в устройстве, называемом аналого-цифровым преобразователем (АЦП).

В преобразователе сигналов из аналоговой формы в цифровую можно выделить следующие процессы: дискретизацию, квантование, кодирование. Рассмотрим сущность этих процессов. При этом для определенности в последующем изложении будем считать, что преобразование в цифровую форму осуществляется над сигналом, представленным в форме меняющегося во времени напряжения.

Дискретизация непрерывных сигналов.

Процесс дискретизации заключается в том, что из непрерывного во времени сигнала выбираются отдельные его значения, соответствующие моментам времени, следующим через определенный временной интервал Т (на рис. 0 – моменты ). Интервал Т называется тактовым интервалом времени, а моменты времени в которые берутся отсчеты, — тактовыми моментами времени.

Дискретные значения сигнала следует отсчитывать с таким малым тактовым интервалом Т, чтобы по ним можно было бы восстановить сигнал в аналоговой форме с требуемой точностью.

рис.0
Квантование и кодирование. Сущность этих операций заключается в следующем. Создается сетка так называемых уровней квантования (рис. 14.0), сдвинутых друг относительно друга на величину ∆, называемую шагом квантования. Каждому уровню квантования можно приписать порядковый номер (0, 1, 2, 3 и т.д.). Далее, полученные в результате дискретизации значения исходного аналогового напряжения заменяются ближайшими к ним уровнями квантования. Так, на диаграмме рис. 14.0 значение напряжения в момент заменяется ближайшим к нему уровнем квантования с номером 3, в тактовый момент значение напряжения ближе к уровню 6 и заменяется этим уровнем и т. д.

Описанный процесс носит название операции квантования, смысл которого состоит в округлении значений аналогового напряжения, выбранных в тактовые моменты времени. Как и всякое округление, процесс квантования приводит к погрешности (к ошибкам квантования) в представлении дискретных значений напряжения, создавая так называемый шум квантования. При проектировании АЦП стремятся снизить шум квантования до такого уровня, при котором он еще обеспечивает требуемую точность представления сигнала. Подробнее шум квантования будет рассмотрен далее.

Следующая операция, выполняемая при аналого-цифровом преобразовании сигналов, - кодирование. Смысл ее состоит в следующем. Округление значения напряжения, осуществляемое при операции квантования, позволяет эти значения представлять числами - номерами соответствующих уровней квантования. Для диаграммы, представленной на рис. 14.0, образуется последовательность чисел: 3, 6, 7, 4, 1, 2 и т.д. Далее, получаемая таким образом последовательность чисел представляется двоичным кодом.

Вернемся к искажениям, связанным с процессом квантования, названным шумом квантования. При телефонной связи шум квантования воспринимается ухом человека действительно в виде шума, сопровождающего речь.

Так как в процессе квантования значение напряжения в каждый тактовый момент времени округляется до ближайшего уровня квантования, ошибка в представлении значений напряжения оказывается в пределах .

Следовательно, чем больше шаг квантования , тем больше ошибки квантования . Считая, что в указанных пределах любые значения равновероятны, можно получить выражение среднеквадратичного значения ошибки квантования .

Уменьшение шума квантования достигается только уменьшением шага квантования . Так как - промежуток между соседними уровнями квантования, то с уменьшением , очевидно, должно возрасти число уровней квантования в заданном диапазоне значений напряжения. Пусть - ширина диапазона изменений напряжения. Тогда требуемое число уровней квантования . Обычно .

Отсюда видно, что уменьшение шума квантования путем уменьшения приводит к увеличению числа уровней квантования N. Это увеличивает число разрядов при представлении номеров уровней квантования двоичными кодами.

При организации телефонной связи номера уровней квантования обычно выражают семи-восьмиразрядными двоичными числами, а число уровней квантования оказывается равным .

Наряду с рассмотренными выше погрешностями - погрешностями квантования - при аналого-цифровом преобразовании возникают погрешности аппаратурные, связанные с неточностью работы отдельных узлов АЦП. Эти погрешности будут выявляться далее при рассмотрении различных схемных построений АЦП.

Ниже будут рассмотрены цифро-аналоговые преобразователи (ЦАП), построенные по принципу суммирования напряжений или токов, пропорциональных весовым коэффициентам двоичного кода.

Схема ЦАП с суммированием напряжений.

рис.1  
Одна из таких схем с суммированием напряжений на операционном усилителе приведена на рис.1. Триггеры образуют регистр, в который помещаются двоичные числа, предназначенные для перевода в пропорциональные им значения напряжения на выходе. Будем считать, что напряжение на выходе каждого из триггеров может принимать одно из двух возможных значений: Е — при состоянии 1 и 0 при состоянии 0.

Напряжения с выходов триггеров передаются на выход ЦАП через операционный усилитель, работающий в режиме взвешенного суммирования напряжений (аналогового сумматора). Для каждого триггера предусматривается отдельный вход в сумматоре с определенным коэффициентом передачи

.

 

Таким образом, напряжение с выхода триггера n-го разряда передается на выход усилителя с коэффициентом передачи: ; этот коэффициент для (n-1)-го разряда: ; для (n-2)-го разряда: и т. д.

Обратим внимание на то, что коэффициенты передачи усилителя с отдельных его входов находятся в том же соотношении, что и весовые коэффициенты соответствующих разрядов двоичного числа. Так, в 2 раза [больше и весовой коэффициент n-го разряда в 2 раза больше весового коэффициента (n-1)-го разряда. Следовательно, напряжения, передаваемые на выход усилителя с выходов триггеров отдельных разрядов, находящихся в состоянии 1, пропорциональны весовым коэффициентам разрядов.

Если в состоянии 1 находятся одновременно триггеры нескольких разрядов, то напряжение на выходе усилителя равно сумме напряжений, передаваемых на этот выход от отдельных триггеров. Пусть цифры отдельных разрядов двоичного числа в регистре . Тогда напряжение на выходе усилителя

Здесь N — десятичное значение двоичного числа, введенного в регистр. Из последнего выражения видно, что напряжение на выходе ЦАП пропорционально значению числа в регистре.

Рассмотрим работу ЦАП в случае, когда на триггерах построен двоичный счетчик. Если подать на вход этого счетчика последовательность импульсов, то с приходом каждого очередного импульса число в счетчике будет увеличиваться на единицу и напряжение на выходе ЦАП будет возрастать на ступеньку, соответствующую единице младшего разряда счетчика. Величина такой ступеньки .

рис.3  
рис 14.2

Таким образом, напряжение на выходе ЦАП будет иметь ступенчатую форму, как показано на рис. 14.2. После поступления импульсов все разряды счетчика будут содержать 1, на выходе ЦАП образуется максимальное напряжение

рис.4

При большом числе разрядов и . Далее очередным импульсом счетчик будет сброшен в нулевое состояние, нулевым будет и выходное напряжение ЦАП. После этого счетчик начинает счет импульсов сначала и на выходе ЦАП вновь формируется напряжение ступенчатой формы.

Суммарная абсолютная погрешность преобразователя должна быть меньше выходного напряжения, соответствующего единице младшего разряда входного двоичного числа:

Отсюда можно получить условие для относительной погрешности:

Это соотношение определяет связь между относительной погрешностью преобразователя и числом его разрядов п. Так, при .

рис. 5   Рис. 6

Недостатки рассмотренной схемы преобразователя:

· используются высокоточные резисторы с различными сопротивлениями;

· трудно обеспечить высокую точность выходного напряжения триггеров.

Эти недостатки устранены в схеме ЦАП, приведенной на рис. 3, где показана схема трехразрядного преобразователя. Нетрудно построить схему с любым заданным числом разрядов. Особенности этой схемы, называемой схемой с суммированием напряжений на аттенюаторе сопротивлений, состоит в том, что, во-первых, используются резисторы лишь с двумя значениями сопротивлений (R и 2R) и, во-вторых, выходные напряжения триггеров непосредственно не участвуют в формировании выходного напряжения ЦАП, а используются лишь для управления состоянием ключей, т. е. устранены отмеченные выше недостатки предыдущей схемы ЦАП (см. рис. 1).

Рассмотрим подробнее работу такого преобразователя. В каждом разряде имеется два.ключа, через один из них в аттенюатор сопротивлений подается напряжение Е, через другой - нулевое напряжение.

Определим напряжения, возникающие на выходе ЦАП от единиц отдельных разрядов числа, помещаемого в регистр. Пусть в регистр введено число . Триггер в состоянии 1, и в третьем разряде открыт ключ , в остальных разрядах триггеры в состоянии 0, и открыты ключи и (рис. 4,а). Последовательными преобразованиями можно получить схему (рис. 14.4,<3), из которой следует, что напряжение в точке .

Если в регистр поместить число , то аттенюатор можно представить схемой, показанной на рис. 5,а. Путем преобразования ее можно привести к схеме, представленной на рис. 14.5,в. Возникающее в точке Ач напряжение имеет то же [значение, что и в предыдущей схеме в точке . Из рис. 14.5 видно, что при передаче на выход преобразователя это напряжение делится на два и, таким образом, .

Можно показать, что при числе напряжение в точке . При передаче этого.напряжения в точку и далее от точки к точке напряжение каждый раз делится на два и .

Итак, напряжение на выходе, соответствующее единицам отдельных разрядов двоичного числа в регистре, пропорционально весовым коэффициентам разрядов. При n-разрядном регистре, обозначив цифры разрядов двоичного числа , получим выражение напряжения на выходе ЦАП:

Из выражения видно, что выходное напряжение ЦАП пропорционально значению числа N, помещаемого в регистр.

Аппаратурные погрешности преобразования в данной схеме связаны с отклонениями сопротивлений резисторов от их номинальных значений, неидеальностью ключей (сопротивление реального ключа в закрытом состоянии не равно бесконечности, а в открытом - неравно нулю), нестабильностью источника напряжения Е. Наибольшее влияние на погрешность ЦАП оказывают эти отклонения в старших разрядах.

Схема ЦАП с суммированием токов.

На рис. 14.6 показан еще один вариант схемы ЦАП - схема с суммированием токов на аттенюаторе сопротивлений. Вместо источника стабильного напряжения Е, в данной схеме используются источники стабильного тока. Если триггер находится в состоянии 1, ток I источника через открытый ключ втекает в аттенюатор сопротивлений; если триггер в состоянии 0, то открывается другой ключ, который замыкает источник. На рис. 7,а показана схема, соответствующая числу . Путем преобразований она приводится к эквивалентным схемам на рис. 7,6 и в, откуда следует . Такое же напряжение образуется в любой из точек , если соответствующий разряд регистра содержит единицу. При передаче напряжения между этими точками напряжение делится на два и, следовательно, выходное напряжение

Элементы, используемые в ЦАП.

Рассмотрим схемные решения элементов, используемых в ЦАП.

Источник стабильного напряжения. На рис. 14.8 представлена схема простого стабилизатора напряжения. В цепь между входом и выходом стабилизатора последовательно включен транзистор . Стабилизация выходного напряжения обеспечивается тем, что при возрастании входного напряжения увеличивается напряжение на транзисторе и наоборот, при снижении напряжение на транзисторе уменьшается. Таким образом, все изменения входного напряжения гасятся на транзисторе . Такой режим транзистора обеспечивается усилителем, построенным на транзисторе . Пусть, например, растет и вследствие этого имеет тенденцию к росту и . Малый рост , усиливаясь, значительно уменьшает напряжение на коллекторе и базе , возрастает падение напряжения между коллектором и эмиттером транзистора .

рис 7 рис 8

Цепочка из резистора и стабилитрона обеспечивает в цепи эмиттера постоянное напряжение , которое стремится запереть транзистор. Для компенсации этого отрицательного смещения используется положительное напряжение, снимаемое с резистора делителя напряжения, составленного из резисторов и . Чем больше , тем большая часть напряжения должна передаваться с на базу и вместе с этим и большая часть изменений напряжения будет прикладываться к базе и, усиливаясь, передаваться на базу .

Источник стабильного тока. Стабилизатор тока, схема которого приведена на рис. 14.9, работает аналогично стабилизатору напряжения. Отличие состоит в том, что входное напряжение усилителя на транзисторе снимается с резистора , который в схеме стабилизатора тока включен последовательно с нагрузкой (ток нагрузки I проходит через . Если, например, возрастает или уменьшится и, таким образом, ток имеет тенденцию к росту, возрастает напряжение на и на базе транзистора . Это приводит к снижению потенциала коллектора и базы , растет напряжение между коллектором и базой транзистора , что препятствует росту тока I.

Ключевые устройства. Ключи преобразователя с суммированием напряжений на сетке сопротивлений (см. рис. 14.3) могут быть выполнены по схеме, представленной на рис. 14.80,а. Транзисторы и управляются напряжениями с выходов триггера. Выход подключается к аттенюатору сопротивлений.

Пусть триггер находится в состоянии 1. На его инверсном выходе нулевой потенциал и транзистор , на базу которого этот потенциал поступает, закрыт. На прямом выходе триггера высокое напряжение, которое, поступая на вход транзистора , удерживает его в открытом состоянии. Через открытый транзистор в аттенюатор сопротивлений подается напряжение Е. Если триггер находится в состоянии 0, закрыт транзистор , а через открытый транзистор в аттенюатор сопротивлений поступает нулевое напряжение.

Таким образом, выполненное по данной схеме устройство исполняет роль двух ключей в разряде преобразователя.

В преобразователе с суммированием токов не предъявляется высоких требований к малости сопротивления открытого ключа. В этом преобразователе может быть использован диодный переключатель, схема которого представлена на рис. 14.80,6. Если триггер находится в состоянии 0, высокое напряжение, поступающее с инверсного выхода триггера, удерживает диод в открытом состоянии. Ток источника замыкается через диод и триггер. Если триггер находится в состоянии 1, диод закрыт и ток I замыкается через диод и аттенюатор сопротивлений.

рис 9 рис 10

 



Поделиться:


Последнее изменение этой страницы: 2017-02-10; просмотров: 250; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.200.226 (0.028 с.)