Логические элементы на комплементарных ключах 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Логические элементы на комплементарных ключах



Комплементарный ключ состоит из двух МОП-транзисторов с каналами разного типа проводимости, входы которых соединены параллельно, а выходы последовательно (рисунок 12.9,а). При напряжении на затворах, больших порогового, для транзистора с каналом определённого типа соответствующий транзистор открыт, а другой закрыт. При напряжении противоположной полярности, открытый и закрытый транзисторы меняются местами.

ЛЭ на комплементарных ключах (КМОП) имеют ряд неоспоримых достоинств.

Они успешно работают при изменении в широких пределах напряжения источника питания (от 3 до 15 В), что недостижимо для ЛЭ, в состав которых входят резисторы.

В статическом режиме при большом сопротивлении нагрузки ЛЭ КМОП практически не потребляют мощности.

Для них также характерны: стабильность уровней выходного сигнала и малое его отличие от напряжения источника питания; высокое входное и малое выходное сопротивления; лёгкость согласования с микросхемами других технологий.

Рисунок 9 Схемы логических элементов КМОП ТЛ: а) инвертор, б) ИЛИ-НЕ, в) И-НЕ.

Схема ЛЭ КМОП, выполняющего функцию 2ИЛИ-НЕ, приведена на рисунке 12.9,б. Транзисторы VT1 и VT3 имеют канал р-типа и открыты при напряжениях на затворах, близких к нулю. Транзисторы VT2 и VT4 имеют канал n-типа и открыты при напряжениях на затворах, больших порогового значения. Если на обоих или на одном из входов действует уровень лог. «1», то на выходе схемы будет сигнал лог. «0», что соответствует выполнению логической операции ИЛИ-НЕ.

Если группы ярусно и параллельно включённых транзисторов поменять местами, то будет реализован элемент, выполняющий функцию И-НЕ (рисунок 9,в). Он работает аналогично предыдущему. Транзисторы VT1 и VT3 имеют канал p-типа и открыты при напряжении на затворах, близких к нулю. Транзисторы VT2 и VT4 имеют канал n-типа и открыты при напряжениях на затворах, больших порогового значения. Если открыты оба эти транзистора, то на выходе будет установлен сигнал «лог. 0».

Таким образом, сочетание параллельного включения транзисторов с каналами p-типа электропроводности, и ярусного соединения транзисторов с каналами n-типа позволили реализовать функцию И-НЕ.

В ЛЭ КМОП очень просто реализуют элементы с тремя устойчивыми состояниями. Для этого последовательно с транзисторами инвертора включают два комплементарных транзистора VT1, VT4 (рисунок 10,а), управляемых инверсными сигналами

Рисунок 10 Инвертор с тремя выходными состояниями а); согласование ЛЭ ТТЛ с ЛЭ КМОП б).

Согласование ЛЭ ТТЛ с ЛЭ КМОП можно выполнить несколькими способами:

1) Питать ЛЭ КМОП малым напряжением (+5 В), при которых сигналы ЛЭ ТТЛ переключают транзисторы ЛЭ КМОП;

2) Использовать ЛЭ ТТЛ с открытым коллектором, в цепь выхода которых включён резистор, подключенный к дополнительному источнику напряжения (рисунок 10,б).

При хранении и монтаже следует опасаться статического электричества. Поэтому при хранении выводы микросхем электрически замыкают между собой. Монтаж их производится при выключенном напряжении питания, причём обязательно использование браслетов, с помощью которых тело электромонтажников соединяется с землёй.

ЛЭ КМОП-серий широко применяются при построении экономичных цифровых устройств малого и среднего быстродействия.

Таблица 3. Параметры некоторых серий ЛЭ КМОП типа

Параметры серия
176, 561, 564  
Напряжение питания UПИТ, В 3…15 2…6
Выходные напряжения, В:
низкого уровня U 0 ВЫХ <0,05 <0,1
высокого уровня U 1 ВЫХ UПИТ –0,05 UПИТ –0,01
Среднее время задержки сигнала, нс:
для UПИТ =5 В   3,5
для UПИТ =10 В  
Допустимое напряжение помехи, В 0,3 UПИТ
Мощность, потребляемая в статическом режиме, мВт/корпус 0,1 0,1…0,5
Входное напряжение, В 0,5…(UПИТ +0,5 В) 0,5…(UПИТ +0,5 В)
Выходные токи, мА 1…2,6 >2,4
Мощность, потребляемая при частоте переключения f =1 МГц, UПИТ =10 В, Cн =50 пф, мВт/корпус  
Тактовая частота, МГц  

 

17. (1.5) Устройства сопряжения аналоговых и цифровых систем. Квантование, дискретизация, кодирование. Теорема Котельникова-Шеннона.

Типы сигналов

Выделяют следующие типы сигналов, которым соответствуют определенные формы их математического описания.

Рис.1. Аналоговый сигнал.

Аналоговый сигнал (analog signal) является непрерывной или кусочно-непрерывной функцией y=x(t) непрерывного аргумента, т.е. как сама функция, так и ее аргумент могут принимать любые значения в пределах некоторого интервала y1 £ y £ y2, t1 £ t £ t2. Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от -¥ до +¥. Множество возможных значений сигнала образует континуум - непрерывное пространство, в котором любая сигнальная точка может быть определена с точностью до бесконечности.

Источниками аналоговых сигналов, как правило, являются физические процессы и явления, непрерывные в динамике своего развития во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (“аналогичен”) порождающему его процессу. Пример графического отображения сигнала приведен на рис.1. Примеры сигналов, аналоговых по своей природе - изменение напряженности электрического, магнитного, электромагнитного поля во времени и в пространстве.

Рис.2. Дискретный сигнал

Дискретный сигнал (discrete signal) по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью отсчетов (samples) y(nDt), где y1 £ y £ y2, Dt - интервал между отсчетами (интервал или шаг дискретизации, sample time), n = 0, 1, 2,...,N. Величина, обратная шагу дискретизации: f = 1/Dt, называется частотой дискретизации (sampling frequency). Если дискретный сигнал получен дискретизацией (sampling) аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам nDt.

Пример дискретизации аналогового сигнала (рис.1) представлен на рис.2. При Dt = const (равномерная дискретизация данных) дискретный сигнал можно описывать сокращенным обозначением y(n). В технической литературе в обозначениях дискретизированных функций иногда оставляют прежние индексы аргументов аналоговых функций, заключая их в квадратные скобки - y[t]. При неравномерной дискретизации сигнала обозначения дискретных последовательностей обычно заключаются в фигурные скобки - {s(ti)}, а значения отсчетов приводятся в виде таблиц с указанием значений координат ti. Для числовых последовательностей (равномерных и неравномерных) применяется и следующее числовое описание: s(ti) = {a1, a2,..., aN}, t = t1, t2,...,tN. Примеры дискретных геофизических сигналов - результаты вертикального электрического зондирования (дискретная величина разноса токовых электродов), профили геохимического опробования, и т.п.

Цифровой сигнал (digital signal) квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией yn = Qk[y(nDt)], где Qk - функция квантования с числом уровней квантования k, при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде дискретного ряда (discrete series) числовых данных - числового массива по последовательным значениям аргумента при Dt = const, но в общем случае сигнал может задаваться и в виде таблицы для произвольных значений аргумента.

Рис. 3. Цифровой сигнал

По существу, цифровой сигнал по своим значениям (отсчетам) является формализованной разновидностью дискретного сигнала при округлении отсчетов последнего до определенного количества цифр, как это показано на рис.3. Цифровой сигнал конечен по множеству своих значений. Процесс преобразования бесконечных по значениям аналоговых отсчетов в конечное число цифровых значений называется квантованием по уровню, а возникающие при квантовании ошибки округления отсчетов (отбрасываемые значения) – шумами (noise) или ошибками (error) квантования (quantization).

В системах цифровой обработки данных и в ЭВМ сигнал всегда представлен с точностью до определенного количества разрядов, а, следовательно, всегда является цифровым. С учетом этих факторов при описании цифровых сигналов функция квантования обычно опускается (подразумевается равномерной по умолчанию), а для описания сигналов используются правила описания дискретных сигналов. Что касается формы обращения цифровых сигналов в системах хранения, передачи и обработки, то, как правило, они представляет собой комбинации коротких одно- или двуполярных импульсов одинаковой амплитуды, которыми в двоичном коде с определенным количеством числовых разрядов кодируются числовые последовательности сигналов (массивов данных).

Рис. 4. Дискретно-аналоговый сигнал

В принципе, квантованными по своим значениям могут быть и аналоговые сигналы, зарегистрированные соответствующей аппаратурой (рис.4), которые принято называть дискретно-аналоговыми. Но выделять эти сигналы в отдельный тип не имеет смысла - они остаются аналоговыми кусочно-непрерывными сигналами с шагом квантования, который определяется допустимой погрешностью измерений.

Большинство сигналов, с которыми приходится иметь дело при обработке геофизических данных, являются аналоговыми по своей природе, дискретизированными и квантованными в силу методических особенностей измерений или технических особенностей регистрации, т.е. преобразованными в цифровые сигналы. Но существуют и сигналы, которые изначально относятся к классу цифровых, как, например отсчеты количества гамма-квантов, зарегистрированных по последовательным интервалам времени.

Сигнал, значения которого отличны от нуля только на конечном интервале Т, называют финитным. Если спектральная функция X(f) сигналов (преобразование Фурье) обращается в нуль вне некоторого конечного интервала частот, то они называются сигналами с финитным спектром. Если сигнал X(t) определен только для значений аргумента t≥0, то он считается каузальным (причинным).

Преобразования типа сигналов.

Формы математического отображения сигналов, как правило, отражают их физическую природу. Однако последнее не является обязательным и зависит от методики измерений и технических средств детектирования, преобразования, передачи, хранения и обработки сигналов. На разных этапах процессов получения и обработки информации как материальное представление сигналов в устройствах регистрации и обработки, так и формы их математического описания при анализе данных, могут изменяться путем соответствующих операций преобразования типа сигналов.

Операция дискретизации (discretization) осуществляет преобразование аналоговых сигналов (функций), непрерывных по аргументу, в функции мгновенных значений сигналов по дискретному аргументу. Дискретизация обычно производится с постоянным шагом по аргументу (равномерная дискретизация), при этом s(t) Þ s(nDt), где значения s(nDt) представляют собой отсчеты функции s(t) в моменты времени t = nDt, n = 0, 1, 2,..., N. Частота, с которой выполняются замеры аналогового сигнала, называется частотой дискретизации. В общем случае, сетка отсчетов по аргументу может быть произвольной, как, например, s(t) Þ s(tk), k=1, 2, …, K, или задаваться по определенному закону. В результате дискретизации непрерывный (аналоговый) сигнал переводится в последовательность чисел.

Операция восстановления аналогового сигнала из его дискретного представления обратна операции дискретизации и представляет, по существу, интерполяцию данных.

Дискретизация сигналов может приводить к определенной потере информации о поведении сигналов в промежутках между отсчетами. Однако существуют условия, определенные теоремой Котельникова-Шеннона, согласно которым аналоговый сигнал с ограниченным частотным спектром может быть без потерь информации преобразован в дискретный сигнал, и затем абсолютно точно восстановлен по значениям своих дискретных отсчетов.

Любая непрерывная функция на конечном отрезке может быть разложена в ряд Фурье, т.е. представлена в спектральной форме - в виде суммы ряда синусоид с кратными (нумерованными) частотами с определенными амплитудами и фазами. У относительно гладких функций спектр быстро убывает (коэффициенты модуля спектра быстро стремятся к нулю). Для представления "изрезанных" функций, с разрывами и "изломами", нужны синусоиды с большими частотами. Говорят, что сигнал имеет ограниченный спектр, если после определенной частоты F все коэффициенты спектра равны нулю, т.е. сигнал представляется в виде конечной суммы ряда Фурье.



Поделиться:


Последнее изменение этой страницы: 2017-02-10; просмотров: 404; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.69.45 (0.014 с.)