Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Условные графические обозначения в цепях постоянного иСодержание книги
Поиск на нашем сайте
Синусоидального токов. R - резистор L - катушка индуктивности. C - конденсатор. Е - источник постоянной ЭДС Е;
- источник синусоидальной ЭДС Е.
1.3. Требования к выполнению и оформлению расчетно-графических работ. Расчетно-графическая работа набирается на компьютере, шрифт №16, или, в крайнем случае, выполняется в отдельной тетради в клетку. Работы, написанные неразборчивым почерком, не принимаются. На титульном листе должны быть обозначены: Факультет, курс, № группы, фамилия, имя и отчество студента, фамилия, имя и отчество преподавателя, проверяющего работу, а также номер варианта задания. Номером варианта задания являются две последние цифры номера зачётной книжки или студенческого билета. На каждой странице должны быть оставлены поля шириной не менее 3 см. Электрические схемы должны быть вычерчены с соблюдением ГОСТ. Векторные диаграммы и графики строятся в масштабе с помощью чертежных инструментов. Оси координат вычерчивают сплошными тонкими линиями. Масштабы шкал по осям выбирают равномерными. Цифры шкал наносят слева от оси ординат и под осью абсцисс. Кривые на графике нумеруют. Надписи не должны выходить за пределы графика. Количество цифр в числах графика должно быть минимальным. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА. 2.1. Краткие теоретические сведения, методы и примеры расчета. Основные законы и расчетные формулы.
Рис.1. Рис.2. Закон Ома (Рис.1 и 2). Для пассивного участка цепи ab: Для активного участка цепи ab: , где: R – сопротивление участка цепи; Uab – напряжение на участке цепи; E –ЭДС источника и ток I, протекающий через участок цепи. Законы Кирхгофа (Рис.3). Узел - точка схемы, к которой присоединены три и более ветвей. Ветвь - это участок цепи между двумя узлами. Контур - любой замкнутый путь, по которому может течь электрический ток. На рисунке 3: A,B,C,D - узлы; AB,CD,BC,DA - ветви; ABCDA -контур. Закон Кирхгофа Алгебраическая сумма токов в узле электрической цепи равна нулю . Правило составления уравнений по I закону Кирхгофа Ток, который втекает в узел, имеет положительный знак, который вытекает, отрицательный. Пример: узел C 2 Закон Кирхгофа В замкнутом контуре алгебраическая сумма ЭДС равна алгебраической сумме падений напряжения в данном контуре:
Правила составления уравнений по II закону Кирхгофа Когда направление обхода контура совпадает с направлением тока в сопротивлении, падение напряжения IR имеет знак +, если направления не совпадают, IR имеет отрицательный знак. Если направление обхода контура совпадает с направлением ЭДС, знак E положителен, если направления не совпадают - отрицателен. На пример, для контура ABCDA: I5 E1 R1 I6 А I1 В E2 R4 I4 I2 R2 I3 E3 D C I9 R3 I8 I7 Рис.3. Баланс мощностей. В любом замкнутом контуре суммарная мощность, выделяемая источниками ЭДС равна мощности, преобразуемой в другие виды энергии потребителями , т.е. , где: и . При этом в генераторном режиме источника направления ЭДС Еi и тока Ii совпадают по знаку, а в режиме потребителя они противоположны. Для контура ABCDA: Последовательное соединение резисторов (Рис. 4). I R1
U U1 U2 R2 U3 R3 Рис. 4. В этом случае единственный ток I протекает через все резисторы . По второму закону Кирхгофаимеем: , откуда и наконец (эквивалентное сопротивление). Для n последовательно включенных сопротивлений: . Параллельное соединение резисторов (Рис.5). Единственное напряжение U приложено ко всем сопротивлениям . Согласно первому закону Кирхгофаимеем: , откуда .
Рис. 5. Проводимость - величина, обратная сопротивлению: G = 1/Ом. Тогда для n включённых параллельно сопротивлений: . Частный случай: Если имеем только два включённых параллельно сопротивленияR1 и R2, то эквивалентное сопротивление цепи равно: , откуда .
Примеры решения задач Метод законов Кирхгофа Пример №1. Для электрической цепи, схема которой изображена на рис.1.1 по заданным сопротивлениям и ЭДС выполнить следующее: 1. Составить систему уравнений для определения токов по первому и второму законам Кирхгофа, для чего необходимо: 1.1. Определить число ветвей, а по ним - число неизвестных токов (m). Этим числом определяется общее количество уравнений, составленных по первому и второму законам Кирхгофа. 1.2. Произвольно выбрать положительные направления токов I 1, I 2 и т.д. 1.3. Определить количество уравнений y, которые следует составить по пер-
вому закону Кирхгофа у = п - 1, где n - количество узловых точек (узлов). Пример: п = 4, у = 4 - 1 = 3 уравнения. 1.4. Составить у уравнений по первому закону Кирхгофа. При этом условимся с плюсом записывать токи, идущие к узлу, а токи, направленные от него – с минусом. 1.5. Определить количество уравнений k, которые следует составить по вто- рому закону Кирхгофа k = т - (п - 1 ), где т - общее число всех неиз- вестных токов. Пусть т = 6, п = 4, тогда k = 6 - (4 -1) = 3 уравнения. 1.6. Произвольно выбрать независимые контуры и направление обхода в них. 1.7. Составить для независимых контуров «k» уравнений по второму закону Кирхгофа. Условимся, что если ЭДС, напряжения и токи совпадают с направлением выбранного обхода контура, то им приписывают знак «плюс», а если не совпадают - «минус». Запишем систему т уравнений, составленную для данного примера из 3х уравнений по первому и 3х уравнений по второму закону Кирхгофа. Уравнения записываем в регулярной форме. 1.8. Составить определители из коэффициентов токов и значений Э,Д,С, 1.9. Загрузить в оперативную память компьютера программу решения системы т уравнений. 1.10. Ввести коэффициенты в компьютер. 1.11. Сделать распечатку. Рассмотрим электрическую цепь Рис.1.1.: E 1 =22В, E 2 = 24 B, E з=10В
R 01 =0,2Ом R 02= 0 Ом Рис.1.1. R оз =1,2Ом R 1 =2 Ом R 2 =1 Ом R з=8 Ом R 4=4 Ом R 5 = 10 Ом R 6 =6 Ом Определить токи в ветвях, пользуясь законами Кирхгофа. Решение 1.1. Определяем число ветвей, а по ним - число неизвестных токов (m). m = 6. 1.2. Произвольно выбираем положительные направления токов I 1, I 2 и т.д. (см. рис. 1). 1.3. Определяем количество уравнений у, которые следует составить по пер вому закону Кирхгофа: у = n - 1, где n - количество узловых точек (узлов). п = 4, у = 4 – 1 = 3 уравнения. 1.4. Составляем у уравнений по первому закону Кирхгофа. Токи, идущие к узлу, записываем с плюсом, а токи, направленные от него - с минусом. Для узла А: I 1 - I 2 + I 3 = 0 Для узла В: I 2 – I 4 – I 6 = 0 Для узла D: - I з – I 5 + I 6 = 0 1.5. Установим количество уравнений k, которые следует составить по втоpому закoну Kирхгофа: k = m - (n - 1), где m - общее число всех неизвестных токов. т = 6, n = 4, тогда k = 6- (4 - 1) = 3 уравнения. 1.6. Выберем произвольно независимые контуры и положительные направления обхода в них (см. рис. 1). Поэтому если ЭДС, напряжения и токи совпадают с направлением обхода контура, им приписываем знак «плюс», а если не совпадают - «минус». 1.7. Составляем для независимых контуров «k» уравнений по второму закону Kирхгофа: Для контура I: (R1 + R01)* I1 - (R3 + Rо3)* I3 + R5 * I5 = E1 – Е3 Для контура 2: (R3 + R02)* I2 + (R3 + Rо3)* I3 + R6* I6 = E2 + Е3 Для контура 3: R4 * I4 –R5 * I5 – R6* I6 = 0 Запишем систему из т уравнений, в которую входят уравнения, составлен- ные по первому и второму закону Кирхгофа. Систему уравнений записываем в регулярной форме. I1 - I2 + Iз + 0 + 0 + 0 = 0 0 + I2 + 0 - I4 + 0 - I6 = 0 0 + 0 - Iз + 0 - I5 + I6 = 0 (R1+Rо1)*I1 + 0 - (Rз+Rоз)*I3 + 0 + R5*I5 + 0 = Е1 - Ез 0 + (R2+R02)*I2+ (Rз+Rоз)*Iз + 0 + 0 + R6*I6 = E2+E3 0 +0 + 0 + R4 * I4 - R5 * I5 + R6* I6 = 0 1.8. Составим определители из коэффициентов токов и значений ЭДС. 1 - 1 + 1 + 0 + 0 + 0 = 0 0 + 1 + 0 - 1 + 0 - 1 = 0 0 + 0 - 1 + 0 - 1 + 1 = 0 2.2 + 0 - 9.2 + 0 + 10 + 0 = 12 0 + 1 + 9.2 + 0 + 0 + 6 = 34 0 + 0 + 0 + 4 - 10 - 6 = 0
1.9. Загрузим в оперативную память компьютера программу решения системы т уравнений. 1.10. Введем коэффициенты в компьютер. 1.11. Распечатаем результат. Метод контурных токов Для уменьшения количества уравнений применяют метод контурных токов. Составляются уравнения только по второму закону Кирхгофа для
независимых контуров. Во внешних ветвях контура реальные токи и контурные токи равны по абсолютной величине. Во внутренних (смежных) ветвях реальные токи равны алгебраической сумме контурных токов, проходящих по этим ветвям. Пример№2: рассмотрим ту же электрическую цепь и те же значения для ЭДС и сопротивлений. E 1 = 22 В, E 2 = 24 B, Eз = 10 В, R 01 = 0,2Ом R 02= 0 Ом R оз = 1,2Ом R 1 = 2 Ом R 2 = 1 Ом Rз= 8 Ом R4= 4 Ом R5 = 10 Ом R6 = 6 Ом Определить токи в ветвях схемы Рис.1.3 методом контурных токов
Рис. 1.3. Решение: Составим уравнения по второму закону Кирхгофа для независимых контуров (R1+Rо1+Rз+Rоз+R5)* I1k - (Rз+Rоз)* I2k - R5* I3k =Е1-Ез - (Rз+Rоз)* I1k +(R 2 +Rо 2 +Rз+Rоз+R 6)* I2k –R 6 * I3k = E 2 +Ез - R 5 * I1k - R 6 * I2k + (R 4 +R 5 +R 6)* I3k = 0 Подставим числовые значения сопротивлений и ЭДС и представим в виде определителя:
Введем числовые данные определителя в компьютер и сделаем распечатку контурных токов: I1k = 6,729 А I2k = 8,06 А I3k = 5,783 А Определим реальные токи в ветвях: I1 = I2k = 6, 729 А I2 = I2k = 8, 062 А I3 = I2k – I1k = 8,062 А - 6,729 А = 1,333 А I4 = I3k = 5,783 А I5 = I1k – I3k = 6,729 А - 5,783 А = 0,945 А. I6 = I2k – I3k = 8,062 А - 5, 783 А = 2,278 А Метод узловых потенциалов М.У.П. Метод узловых потенциалов М.У.П. основан на первом законе Кирхгофа и позволяет сократить количество уравнений для сложной электрической цепи. Пример №3: Рассчитать токи методом узловых потенциалов в схеме Рис. 1.4.
1. Заземлим точку D Рис.1.4. 2. Обозначим потенциал точки А через φ а, а потенциал точки В через φ в, потенциал точки С через φ с.
3. ИСХОДНЫЕ ДАННЫЕ: Е1 = 22 В; Е 2 = 24 В; Е з = 10 В. R01 = 0,2 Ом; Ro2 = 0; Rоз = 1,2Oм R1 = 2 Ом;R 2 = 1 Ом; Rз = 8 Ом. R4 = 4 Ом; R5=10 Ом; R 6 =6Ом Определить токи в ветвях.
|
|||||||||||||||||||||||
Последнее изменение этой страницы: 2017-02-08; просмотров: 105; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.69.58 (0.008 с.) |