Эксперименты с восприятием наклона 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Эксперименты с восприятием наклона



Первый эксперимент показал, что в случае, когда плотность равномерно распределена в окне, феноменальный наклон был равен нулю, а когда плотность возрастала в каком-то направлении, в этом же направлении возрастал и воспринимаемый наклон (Gibson, 1950a).

Гибсон и Корнсвит обратили внимание на то, что в этих опытах изучался оптический, а не географический наклон (Gibson, Cornsweet, 1952). Оптический наклон отсчитывается относительно фронтальной плоскости (то есть плоскости, перпендикулярной линии взора), а не относительно земной поверхности. В этом смысле оптический наклон мало чем отличается от глубины. Он был, по существу, ее особой разновидностью, качеством, которое добавлялось к любому плоскому фрагменту в мешанине зрительного поля.

Впечатление наклона нельзя изолировать, создавая с помощью оптических ухищрений текстуру в проеме окна, поскольку на него будет влиять восприятие заслоняющего края окна. Поверхность наклонена относительно поверхности, в которой находится окно. Это разные поверхности, и в результате проведения экспериментов выяснилось, что роль этого факта нельзя недооценивать. Флок показал, что гипотетическая абсолютная оценка наклона поверхности за окном становится более точной, если постепенное увеличение плотности текстуры заменить постепенным уменьшением скорости текстуры (Flock, 1964). В этом случае позади окна «повисает» виртуальная поверхность. Она отклоняется в том направлении, в котором поток текстуры уменьшается, однако если правильно (с математической точки зрения) подобрать градиент, то такая текстура будет восприниматься как жесткая движущаяся поверхность.

Выводы

Если свет, попадающий в глаз, наделен структурой, то воспринимается поверхность; если свет не структурирован, то поверхность не воспринимается. Различие здесь не в том, что, как считали прежние исследователи, в одном случае видятся два измерения, а в другом — три.

В эксперименте с искусственно созданным оптическим строем было обнаружено, что чем ближе друг к другу разрывы, тем более выражена в восприятии «поверхностность». По крайней мере это верно для оптического строя в 30° в котором было от 7 до 36 контуров (то есть разрывов).

Некоторые животные, по-видимому, в такой же степени не могут нормально стоять или ходить без оптического контакта с опорной поверхностью, в какой они не могут этого делать без механического контакта.

Животные, судя по всему, развивают в себе способность воспринимать значение выступов опорной поверхности. Причем здесь мы имеем дело не с восприятием абстрактной глубины, а с восприятием возможностей.

Эксперименты с восприятием расстояния на земной поверхности (в отличие от опытов с восприятием расстояния в воздухе) показывают, что такое восприятие основано не на признаках, а на инвариантах в оптическом строе. Правило равного количества текстуры в равновеликих участках местности представляет собой один из таких инвариантов, а горизонтное отношение — другой. Подобного рода инварианты позволяют непосредственно воспринимать все параметры лежащего на земле предмета. При этом не возникает проблем, подобных старой проблеме константности воспринимаемого размера при изменении расстояния.

Был проведен ряд экспериментов с восприятием наклона поверхности относительно линии взора, однако подтвердить гипотезу об абсолютном градиенте не удалось. Эти опыты показали, что воспринимаются наклон поверхностей друг относительно друга (в том числе относительно земной поверхности) и глубинные очертания компоновки. Эксперименты, задуманные как довод в пользу эквивалентных конфигураций, не доказывают того, что для восприятия окружающего мира необходимы предварительные гипотезы, так как их авторы не учитывают того факта, что наблюдатель обычно перемещается.

17. Экологический подход к проблеме константности восприятия и его экспериментальное обоснование (Глава 9).

Восприятие расстояния и размера на земной поверхности.

Эксперимент же с естественно текстурированным полем на открытом воздухе был впервые проведен, пожалуй, только в конце второй мировой войны (Gibson, 1947). Опыты проводились на поле, которое простиралось почти до самого горизонта и было тщательно перепахано, так что на нем не было видно никаких борозд. В этом необычном по тем временам эксперименте требовалось оценить высоту вех, расставленных по полю на расстоянии до полумили. При таком расстоянии оптические размеры элементов текстуры и оптические размеры самих вех были чрезвычайно малы.

Оценки размера, которые давали наивные испытуемые в эксперименте с вехами на открытом воздухе, не уменьшались даже тогда, когда вехи находились в десяти минутах ходьбы (с такого расстояния их едва-едва можно было разглядеть). С увеличением расстояния увеличивался разброс оценок, но сами оценки не уменьшались. Константность размера не нарушалась. Размер объекта с расстоянием не уменьшался, а лишь становился менее определенным.

В этих опытах было показано (ив этом заключается, как я теперь считаю, их главное значение), что наблюдатели неосознанно извлекают определенное инвариантное отношение, а размер сетчаточного изображения не играет никакой роли. Независимо от того, насколько далеко находится объект, он пересекает или заслоняет одно и то же число текстурных элементов земи. Это число является инвариантным отношением. На каком бы расстоянии ни находилась веха, отношение, в котором ее делит горизонт, также является инвариантным. Это еще одно инвариантное отношение. Эти инварианты — не признаки, а информация для прямого восприятия размера. В описываемом эксперименте испытуемыми были авиаторы-стажеры, которых не интересовал перспективный вид местности и объектов

Оказалось, что восприятие размера объекта, находящегося на земле, и восприятие расстояния до него отличаются от восприятия размера объекта, находящегося в небе, и восприятия расстояния до него. В последнем случае нет никаких инвариантов.

 

Сравнение отрезков расстояния на земной поверхности. Размер объекта, лежащего на земле, принципиально ничем не отличается от размера объектов, из которых состоит сама земля. Ландшафт составляют комки почвы, камни, галька, листья, трава. Для этих встроенных друг в друга объектов константность размера может иметь место в той же мере, что и для обычных объектов. В серии описываемых ниже опытов с восприятием земной поверхности было устранено само различие между размером и расстоянием. Нужно было сравнивать не вехи и не объекты, а отрезки расстояния на самой земле — расстояния между маркерами, устанавливавшимися экспериментатором. В этом случае расстояние между здесь и там можно было сравнивать с расстоянием между там и там. Эти эксперименты в открытом поле проводила Элеонора Дж. Гибсон (Gibson, Bergman, 1954; Gibson, Bergman, Purdy, 1955; Purdy, Gibson, 1955).

Маркеры можно было установить в любом месте ровного травяного поля и передвигать на любое расстояние в пределах 350 ярдов. В наиболее интересном опыте из этой серии от испытуемого требовалось разделить пополам расстояние от себя до маркера или расстояние от одного маркера до другого (Purdy, Gibson, 1955). Испытуемый должен был остановить тележку с маркером ровно на полпути от одного конца отрезка до другого. В лаборатории способность испытуемого делить длину отрезка пополам проверяют с помощью регулируемого стержня, называемого рейкой Гальтона, а не с помощью участка земли, на котором он стоит.

Все наблюдатели были в состоянии без каких бы то ни было затруднений достаточно точно разделить расстояние пополам. В результате деления дальний отрезок расстояния оказывался приблизительно равным ближнему, несмотря на то что их зрительные углы были неравными. Дальний зрительный угол был меньше ближнего, а его поверхность, если допустить терминологическую вольность, была перспективно искажена. Однако никаких систематических ошибок не было. Отрезок расстояния между здесь и там мог быть приравнен к отрезку расстояния между там и там. Следует сделать вывод, что наблюда-

тели обращали внимание не на зрительные углы, а на информацию. Сами того не подозревая, они обнаружили способность определять количество текстуры в зрительном угле. Количество пучков травы в дальней половине отрезка было в точности таким же, как в ближней половине. Оптическая текстура действительно становится более плотной и более сжатой в вертикальном направлении по мере удаления поверхности земли от наблюдателя, но правило равного количества текстуры на равновеликих участках местности остается неизменным.

Это очень сильный инвариант. Он действует для любой регулярно текстурированной поверхности, какой бы она ни была, то есть для любой поверхности, состоящей из одного и того же вещества. Говорить, что поверхность регулярно текстурирована,— значит утверждать лишь то, что частички вещества приблизительно равномерно распределены в пространстве. Их распределение совсем необязательно должно быть полностью регулярным наподобие распределения атомов в кристаллической решетке. Достаточно, чтобы оно было «стохастически» регулярным.

Правило равного количества текстуры на равновеликих участках местности предполагает, что и размер, и расстояние воспринимаются непосредственно. Старая теория, согласно которой при восприятии размера какого-нибудь объекта учитывается и расстояние до него, оказывается ненужной. Извлечение количества текстуры в зрительном телесном угле оптического строя есть измерением с помощью произвольных единиц. В одном из опытов этой серии, проведенном в открытом поле, испытуемых просили оценить расстояние в ярдах, то есть произвести так называемую абсолютную оценку. После некоторой тренировки испытуемые делали это достаточно хорошо, однако было ясно, что прежде, чем научиться присваивать расстояниям числа, они должны были научиться видеть эти расстояния.

 

Понятие точки схода появилось в теории плоских изображений; оно связано с искусственной перспективой и схождением параллельных линий. Понятие предела сжатия1 оптической текстуры у горизонта появилось в теории объемлющего оптического строя; оно связано с естественной перспективой и отражает факт экологической оптики.

Итак, земной горизонт представляет собой инвариантное свойство зрения в земных условиях; он является инвариантом любого объемлющего строя, для любой точки наблюдения. В нем нашла свое выражение реципрокность наблюдателя и окружения; это инвариант экологической оптики.

Горизонт рассекает все находящиеся на земле объекты одинаковой высоты в одном и том же отношении вне зависимости от их угловых размеров. Это простейшая форма «горизонтного отношения». Любые два дерева или столба, которые горизонт делит пополам, имеют одну и ту же высоту, равную удвоенной высоте расположения глаз наблюдателя. Более сложные отношения задают более сложные компоновки. Седжвик показал, что оценка размера объекта, изображенного на картине, определяется этими же отношениями.

Восприятие того, что можно было бы назвать уровнем взора на стенах, на окнах, на деревьях, на столбах и на прочих объектах окружающего мира, представляет собой другой случай взаимодополнительности видения компоновки окружающего мира и видения самого себя в окружающем мире. По отношению к земной обстановке горизонт находится на уровне взора. Но это уровень моего взора, и, когда я встаю или сажусь, он поднимается или опускается. Если я хочу поднять уровень моего взора — горизонт — над тем, что загромождает окружающий мир, я должен забраться на более высокое место. Восприятие того, что здесь, и восприятие того, что бесконечно удалено отсюда, взаимосвязаны.

Вывод

Эксперименты с восприятием расстояния на земной поверхности (в отличие от опытов с восприятием расстояния в воздухе) показывают, что такое восприятие основано не на признаках, а на инвариантах в оптическом строе. Правило равного количества текстуры в равновеликих участках местности представляет собой один из таких инвариантов, а горизонтное отношение — другой. Подобного рода инварианты позволяют непосредственно воспринимать все параметры лежащего на земле предмета. При этом не возникает проблем, подобных старой проблеме константности воспринимаемого размера при изменении расстояния.

 

18. Экологический подход к проблеме восприятия движения и его экспериментальное обоснование (Глава 10).

Глава 10 Эксперименты с восприятием движения во внешнем мире и с восприятием собственных движений



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 199; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.14.219 (0.009 с.)