Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ентропія як міра невизначеності в системі

Поиск

Энтропия (от греч. entropia - поворот, превращение) - мера неупорядоченности больших систем. Впервые понятие "энтропия" введено в XIX в. в результате анализа работы тепловых машин, где энтропия характеризует ту часть энергии, которая рассеивается в пространстве, не совершая полезной работы (отсюда определение: энтропия - мера обесценивания энергии). Затем было установлено, что энтропия характеризует вероятность определенного состояния любой физической системы среди множества возможных ее состояний. В закрытых физических системах все самопроизвольные процессы направлены к достижению более вероятных состояний, т. е. к максимуму энтропии. В равновесном состоянии, когда этот максимум достигается, никакие направленные процессы невозможны. Отсюда возникла гипотеза о тепловой смерти Вселенной. Однако распространение на всю Вселенную законов, установленных для закрытых систем, не имеет убедительных научных оснований. В XX в. понятие " энтропия " оказалось плодотворным для исследования биосистем, а также процессов передачи и обработки информации. Эволюция в целом и развитие каждого организма происходит благодаря тому, что биосистемы, будучи открытыми, питаются энергией из окружающего мира. Но при этом биопроцессы протекают таким образом, что связанные с ними "производство энтропии " минимально. Это служит важным руководящим принципом и при разработке современных технологических процессов, при проектировании технических систем. Количественная мера информации формально совпадает с "отрицательно определенной " энтропией. Но глубокое понимание соответствия энтропии физической и информационной остается одной из кардинальных недостаточно исследованных проблем современной науки. Ее решение послужит одним из важных факторов становления нового научно-технического мышления.

Энтропия широко применяется и в других областях науки: в статистической физике как мера вероятности осуществления какого-либо макроскопического состояния; в теории информации как мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Эти трактовки имеют глубокую внутреннюю связь. Например, на основе представлений об информационной энтропии можно вывести все важнейшие положения статистической физики.

Теория информации возникла для описания передачи и приёма сообщений в процессе деятельности человека. Во всех её задачах присутствуют понятия передатчика и приёмника, сигнала-сообщения, событий и их вероятностей. Существование цели передачи информации в теории информации выражается тем, что вводится понятие известного заданного события. Для него может быть определена вероятность р0 наступления до приёма сообщения и р1 после приёма.

В силу определения информации как устранённой неопределённости в достижении цели строгая (то есть математическая) формализация понятия об информации требует выразить математическим соотношением, что есть неопределённость в достижении цели.

Существование неопределённости связано с участием вероятностей в осуществлении событий. Устранение неопределённости есть увеличение вероятности наступления того, что задано как цель. Поэтому вероятности должны участвовать в математической формулировке величины устранённой неопределённости.

Первая удачная попытка реализовать определение информации на такой основе осуществлена в 1928 г. Л. Хартли. Пусть возможно в данных условиях n вариантов некоторого результата. Целью является один из них. Хартли предложил характеризовать неопределённость логарифмом числа n. То есть log n является количественной мерой неопределённости. Выбор основания логарифма связан с понятием об алфавитах для описания информации. Этот выбор существенен для экономичности кодирования в технических устройствах или живых системах (сокращения потоков импульсов или аналоговых сигналов), но не меняет самого количества информации как устранённой неопределённости за счёт того, что перед логарифмом вводится безразмерный множитель, выражаемый модулем перехода между основаниями логарифмов. От него зависят названия единиц информации.

При математическом описании неопределённости (например способом Хартли) в случае равновероятных результатов можно перейти от их числа n к обратной величине - вероятности р одного из них. В терминах связи конкретно говорят о вероятности переданного сообщения р0 у приёмника до приёма сообщения. Устранение неопределённости выражается тем, что вероятность переданного сообщения у приёмника после приёма сигнала возрастает и становится р1. Тогда количественная мера s полученной информации (устранённой неопределённости) выражается логарифмом отношения вероятностей:

 

Оно равноправно по отношению к любому конкретному сообщению и имеет разную величину в зависимости от величин р0 и р1 для него. В частном случае, когда при передаче полностью отсутствую шумы и сбои, искажающие сигнал, вероятность р0 равна единице.

Недостаток этого определения в том, что оно справедливо в приближении равновероятности всех исходов. Это выполняется далеко не всегда. В пределе в этом определении невероятному исходу приравнивается неизбежный. В 1948 г. это исправил К. Шеннон, который определил в качестве меры неопределённости выражение:

 

где

 

есть вероятности отдельных исходов. Он предложил называть эту величину "энтропией", не поясняя связей и различий этого термина с общеизвестой энтропией в физике. Знак минус в предыдущей формуле отражает тот факт, что вероятности всегда меньше единицы, а энтропия знакопостоянная функция, для которой привычно задан положительный знак. Определение Шеннона сокращённо зависывают в виде:

,

подразумевая как очевидное, что признаки (аргументы), по отношению к которым определены события и их вероятности, могут быть существенно разными, а в эта формула (суммирование в ней) справедлива только для однородных признаков.



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 212; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.0.255 (0.008 с.)