Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные технико-экономические характеристики отечественных ГТУСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Предисловие
На современном этапе развития тепловых двигателей газотурбинные установки (ГТУ) прочно завоевали первое место и нашли широкое применение практически во всех основных сферах жизнедеятельности человеческого общества: энергетике, газо- и нефтеснабжении, металлургической и нефтехимический промышленности, воздушном, водном, железнодорожном, автомобильном транспорте и пр.По этой причине в учебном плане специальности “Газотурбинные, паротурбинные установки и двигатели” изучению газотурбинных установок, режимов их работы и другим вопросам газотурбостроения отводится весьма значительное место. Несмотря на то, что издаваемая и периодическая литература по газотурбостроению очень обширна и многообразна, учебной литературы по изучению ГТУ явно недостаточно. Поэтому возникла настоятельная необходимость написания данного пособия, которое дополнит и расширит имеющийся в литературных источниках материал, облегчит студентам работу по курсовому и дипломному проектированию и будет способствовать более глубокой проработке специальных вопросов. Помимо краткого изложения теории вопросов, относящихся к рассматриваемым в курсовых работах, в учебном пособии подробно освещаются особенности расчета наиболее распространенных вариантов схем ГТУ. В приложениях приведены примеры расчета всех вариантов заданий, выдаваемых студентам, и дается необходимый справочный материал, существенно облегчающий работу студента и сокращающий время, затрачиваемое им на выполнение заданий. Темой курсовой роботы по дисциплине “Паро- и газотурбинные установки” является расчет тепловой схемы ГТУ в нескольких вариантах: приводные (газотурбинные газоперекачивающие агрегаты (ГГПА) и энергетические установки в простейшем исполнении, с регенератором, с котлом-утилизатором (КУ) для теплофикации и горячего водоснабжения, ГТУ в сочетании с паротурбинной установкой (бинарные ПГУ) с котлом-утилизатором, без дожигания топлива, форсированные или контактные или монарные газопаровые установки (МПГУ). Предусматривается как двухвальное, так и одновальное (генераторное) исполнение каждой из перечисленных ГТУ. Темы выдаются в предположении их дальнейшей проработки в курсовых проектах по дисциплинам “Энергетические машины” (курсовой проект “Расчет и конструирование многоступенчатой газовой турбины”) и "Режимы работы энергоустановок" (курсовая работа “Расчет режимных характеристик и рабочей линии ГТУ) Содержание и объем курсовой работы определяется заданием, выдаваемым каждому студенту на специальном бланке, подписываемым руководителем проекта. В задании указывается: тема работы, исходные данные для расчета, содержание расчетно-пояснительной записки с указанием подлежащих разработке вопросов, перечень графического материала, дата выдачи задания и срок представления готовой работы к защите. В исходных данных задаются мощность, назначение и тип ГТУ, вариант исполнения тепловой схемы, отправные значения начальных температур газа и воздуха. Каждый вариант заканчивается определением основных технико-экономических показателей рассчитанной тепловой схемы ГТУ и выводом относительно её применения. Для полноты картины изложения в приложении даны примеры расчета тепловой схемы в пяти вариантах исполнения. При дипломном проектировании перед студентом ставится более сложная задача, чем повторение расчета уже существующих схем. В дипломном проекте студент должен разработать вариант усовершенствованной или комбинированной тепловой схемы с её технико-экономическим обоснованием. С этой целью в учебном пособии приводятся сведения по наиболее перспективным комбинированным тепловым схемам и комбинированным теплообменным аппаратам газотурбинных установок. При написании учебного пособия авторы стремились собрать воедино разрозненный по литературным и другим источникам материал для более четкого и полного представления студенту о характере и содержании работы, которую ему предстоит выполнить. При этом были использованы общепринятые в турбостроении обозначения, сокращения и символы.
1. Современные энергетические, приводные и транспортные ГТУ в подавляющем большинстве случаев выполняются по простейшим схемам и по схемам с утилизацией тепла отработавших газов (рис.1). Соответствующие им циклы в T-S диаграмме представлены на рис. 2. Основные технико-экономические характеристики отечественных и зарубежных приводных ГТУ приведены в таблицах 1, 2, 3. Предпочтение отдается многовальным ГТУ, двух-, трех-, четырехвальным, с выделенной силовой турбиной, с размещением всех компрессоров и турбин в одном общем корпусе, используя уникальную компоновку турбомашин “вал в вале”, что обеспечивает более высокую экономичность на всех режимах работы, чем одновальные. В таких устаноках каждый вал имеет свою, близкую к оптимальной частоту вращения, определяемую приводом (рис. 1г, 1д). Промежуточное охлаждение в схемах ГТУ находит пока ограниченное применение и по технико-экономическим соображениям может быть обосновано в ГТУ с начальной температурой газа перед ТВД выше 1000°С. В таких установках оптимальная степень повышения давления будет выше popt > 20 и для её обеспечения необходимо несколько последовательно включенных цикловых компрессоров. Поиски путей оптимизации таких ГТУ привели к созданию трех- и четырехвальных ГТУ с компоновкой агрегатов в одну линию. Два или три последовательно включенных компрессора имеют оптимальные характеристики и самостоятельный турбинный привод. При этом один вал проходит внутри другого вала. В качестве силовой используется последняя турбина (рис. 1г, 1д). Такое решение было использовано в ГТУ авиационного и судового типов. При наличии нескольких последовательно включенных компрессоров появляется возможность внутреннего промежуточного охлаждения воздуха. В рассматриваемом случае оптимальным будет являться воздухоохладитель смешивающего типа с водоиспарительным охлаждением. Причем во избежание влажного сжатия в первых ступенях последующего компрессора впрыск воды в воздухоохладителе должен осуществляться в количестве, обеспечивающем состояние воздуха перед компрессором близкое к линии насыщения (точка росы) при отсутствии капельной влаги. В зависимости от компоновки агрегата воздухоохладитель может выполняться встроенным между компрессорами (рис.3) или выносным. Первый вариант более предпочтителен, так как практически не увеличивает габариты и массу агрегата, но вместе с тем позволяет осуществлять водоиспарительное охлаждение (ВИО) воздуха до линии насыщения. Например, расстояние между КНД и КВД в авиационных и судовых установках достаточное для испарения влаги при заданных параметрах и для выполнения ВИО между КНД и КВД. Водоиспарительное охлаждение воздуха до линии насыщения может осуществляться также при входе атмосферного воздуха в компрессор для любой ГТУ, выполненной по любой из представленных на рис.1 схем, во всех случаях, когда из соображений повышения экономичности ГТУ требуется охлаждение всасываемого воздуха (районы с сухим и жарким климатом).
Таблица 1 Приложения
Примеры расчета тепловых схем ГТУ Расчет тепловой схемы ГТУ рассмотрен на примере ГТН-25 в пяти вариантах исполнения: простейшая, с теплофикацией, бинарная ПГУ, КГТУ (все четыре варианта безрегенеративные) и с регенерацией. Исходные данные для расчета: эффективная мощность начальная температура газа Т1=1223 К (950°С); температура воздуха принята Т3=273 К (0°С) - для северных районов использования ГТУ, для остальных районов применяется средняя температура воздуха Т3=288 К (15°С); назначение - привод нагнетателя природного газа; исполнение - двухвальная с “разрезным” валом с выделенным однокаскадным компрессором и свободной силовой турбиной. Термодинамические процессы рассчитываются с использованием графиков прил. 1. Расчет компрессора Для безрегенеративных вариантов тепловых схем ГТУ p = 13,2. Давление за компрессором Р4 = pР3 = 13,2×98,1 = 1295 кПа. Удельную работу компрессора и температуру воздуха за ним определяем в следующей последовательности. Сначала находим температуру изоэнтропийного сжатия за компрессором Изоэнтропийный перепад энтальпий в компрессоре
Действительный перепад энтальпий при hк=0,87
Температура воздуха за компрессором
Для варианта с регенератором будем соответственно иметь: T1 = 7; Р4 = p×Р3 = 7×98,1 = 686,7 кПа; К = 1,39; m = 0,281; Расчет камеры сгорания При отсутствии данных по топливу за его основу принимаем стандартный углеводород (85% С и 15% Н), для которого При этих условиях для всех четырех вариантов тепловой схемы ГТУ без регенератора в первом приближении будем иметь
Значения теплосодержания воздуха Коэффициент избытка воздуха a = (Lo+qв)/ Lo = (15+45)/15 = 4. Удельный расход рабочего тела в КС увеличился на величину qтоп = 1/(a× Lo) = 1/(4 ×15) = 0,01667. Для варианта контактной (форсированной или монарной) ГТУ коэффициент избытка воздуха a будет иметь меньшее значение, которое в случае необходимости по заданию руководителя проекта может быть уточнено в дальнейших расчетах
где d = 0,12 (d = 0,05 - 0,25) - относительное количество впрыскиваемого пара (воды); id и i4П - теплосодержание пара в точках d и 4П (рис.1.2, е). Для варианта ГТУ с регенерацией при расчете КС необходимо предварительно определить температуру воздуха, поступающего в КС из регенератора в такой же последовательности. Степень расширения в турбине pТ = p/n =7/1,1 =6,364. Температура газа за турбиной для регенеративных ГТУ находится в пределах 800 - 870 К. Принимая Т2 =820 К, оценим среднюю температуру процесса расширения в турбине Тср = (Т1+Т2)/2 = (1223+820)/2 = 1021 К. По этой температуре и графикам рис.3 (прил.1) находим К=1,325 и m=(К-1)/К = (1,325-1)/1,325 = 0,246, приняв a = 5 несколько выше, чем для вариантов без регенерации. Температура изоэнтропийного расширения за турбиной
При наличии регенератора
Коэффициент избытка воздуха a = (Lo+qв)/ Lo = (15+60,6)/60,6 = 5,05. Удельный расход рабочего тела в КС увеличился на величину qтоп= 1/(a Lo) = 1/(5,05×15) = 0,01321 против 0,01667 без регенерации. Таким образом, введение регенерации в цикле при сохранении других исходных параметров неизменными (Т1; Т3; Ne) уменьшает оптимальную степень повышения давления, удельный расход топлива и увеличивает коэффициент избытка воздуха (вследствие увеличения температуры воздуха, поступающего в КС, и уменьшения тепла топлива, подводимого в ней). Расчет газовой турбины Для простейшей схемы коэффициент потерь давления n будет иметь наименьшие значения. В частности, примем n = 1,04, n1 = n2 = 1,02. Тогда Р4 = Р3×p = 98,1×13,2 = 1295 кПа; pТ = p/n = 13,2/1,04=12,7; давление пред турбиной Р4 = Р3 n1 = 1295/1,02 = 1270 кПа. Давление за турбиной Р2 = Р1/pТ = 1270/12,7 = 100 кПа. Изоэнтропийная температура расширения за турбиной Изоэнтропийный перепад энтальпий в турбине.
Действительный перепад энтальпий в турбине НТ = Нто×hтохл = 674×0,875 = 590 кДж/кг, и температура газа за турбиной Т2 = Т1 - НТ/ Расход газа для охлаждаемой ГТУ определяется по соотношению GГ = Ne/(Hеохл). Эффективная удельная работа ГТУ с учетом охлаждения при mВ = 0
Расход топлива Для теплофикационных ГТУ и бинарных ПГУ из-за наличия котла-утилизатора сопротивление выходного тракта существенно возрастает. Для этих вариантов следует принимать n = 1,06 - 1,08. В данном примере n = 1,07. Значения p; hтохл; hк; hм;
hмт = hмк = 0,98;
Эффективная удельная работа ГТУ с учетом охлаждения:
Расход газа Расход топлива
,32 кг/с,
Таким образом в вариантах с теплофикацией и ПГУ по сравнению с простейшей ГТУ из-за увеличения сопротивления выходного тракта удельная работа ГТУ снизилась на 7,8%, расход газа и воздуха возросли на 7,5%. Относительный же расход топлива остался приблизительно на прежнем уровне Для варианта КГТУ имеем следующие исходные данные: сопротивление выходного тракта несколько возрастет из-за наличия секций котла-утилизатора, и поэтому n2 = 1,03; n1 = 1,02; n = 1,05; p = 13,2; pТ = p/n = 13,2/1,05 = 12,55; Р1 = Р4/n1 = 1295/1,02 = 1270 кПа. Р2 = Р1/ pТ = 1270/12,55 = 101,2 кПа;
=0,97×1,196×1223(1-12,55-0,25)×0,875×0,98-1,018/0,87×273(13,20,28-1)+0,12× ×2,42×1223(1-12,55-0,19) ×0,875×0,98-0,09×341,7 = 309,69 кДж/кг, где
При условии сохранения режима работа компрессора при тех же условиях, что и в простейшем варианте, т.е. при p = 13,2, и том же числе оборотов и производительности воздуха добавка 12% пара от расхода воздуха дает увеличение общего расхода рабочего теле в турбине (продукты сгорания + пар), до величины
× ×348,6 -17×648)/(44300×0,99) = 2,845 кг/с.
Таким образом, вариант КГТУ при сохранении расхода воздуха компрессором вследствие ввода пара (воды) в камеру сгорания дает по сравнению с простейшим вариантом существенное увеличение удельной эффективности работы. В данном примере DНеохл = (НеохлКГТУ-Неохл)/ Неохл = (309,69-182,2)/182,2 = 0,6997 или ~70% при некотором увеличении относительного расхода топлива D Вариант с регенерацией по многим параметрам существенно отличается от рассмотренных выше. В этом варианте p = pрасч=popt= 7; n = 1,1; n1 = n2 = 686,7/1,05 = 654 кПа; Р2 = Р1/pТ = 654/6,364 = 102,77 кПа. Из расчета камеры сгорания имеем
Тср = 1023 К; К = 1,325; m = (К-1)/К = (1,325-1)/1,325 = 0,246; a = 5; СрСр = 1,0879 кДж/кг;
Нто×hт = 525,6×0,875 = 459,9 кДж/кг; при mВ = 0 и
= 0,97(525,6×0,875×0,98-200/0,87)-0,09×200/0,87 = 186,3 кДж/кг;
Расход газа GГ = Nе/Неохл = 25000/186,3 = 1342 кг/с; Таким образом, для регенеративной ГТУ по сравнению с простейшей, несмотря на уменьшение перепада энтальпий в турбине (вследствие снижения pрасч), удельная эффективная работа практичеки не изменилась (вследствие уменьшения работы сжатия), а поэтому расходы газа и воздуха остались приблизительно теми же. Относительный расход топлива снизились на 0,4% (абсолютных). Предисловие
На современном этапе развития тепловых двигателей газотурбинные установки (ГТУ) прочно завоевали первое место и нашли широкое применение практически во всех основных сферах жизнедеятельности человеческого общества: энергетике, газо- и нефтеснабжении, металлургической и нефтехимический промышленности, воздушном, водном, железнодорожном, автомобильном транспорте и пр.По этой причине в учебном плане специальности “Газотурбинные, паротурбинные установки и двигатели” изучению газотурбинных установок, режимов их работы и другим вопросам газотурбостроения отводится весьма значительное место. Несмотря на то, что издаваемая и периодическая литература по газотурбостроению очень обширна и многообразна, учебной литературы по изучению ГТУ явно недостаточно. Поэтому возникла настоятельная необходимость написания данного пособия, которое дополнит и расширит имеющийся в литературных источниках материал, облегчит студентам работу по курсовому и дипломному проектированию и будет способствовать более глубокой проработке специальных вопросов. Помимо краткого изложения теории вопросов, относящихся к рассматриваемым в курсовых работах, в учебном пособии подробно освещаются особенности расчета наиболее распространенных вариантов схем ГТУ. В приложениях приведены примеры расчета всех вариантов заданий, выдаваемых студентам, и дается необходимый справочный материал, существенно облегчающий работу студента и сокращающий время, затрачиваемое им на выполнение заданий. Темой курсовой роботы по дисциплине “Паро- и газотурбинные установки” является расчет тепловой схемы ГТУ в нескольких вариантах: приводные (газотурбинные газоперекачивающие агрегаты (ГГПА) и энергетические установки в простейшем исполнении, с регенератором, с котлом-утилизатором (КУ) для теплофикации и горячего водоснабжения, ГТУ в сочетании с паротурбинной установкой (бинарные ПГУ) с котлом-утилизатором, без дожигания топлива, форсированные или контактные или монарные газопаровые установки (МПГУ). Предусматривается как двухвальное, так и одновальное (генераторное) исполнение каждой из перечисленных ГТУ. Темы выдаются в предположении их дальнейшей проработки в курсовых проектах по дисциплинам “Энергетические машины” (курсовой проект “Расчет и конструирование многоступенчатой газовой турбины”) и "Режимы работы энергоустановок" (курсовая работа “Расчет режимных характеристик и рабочей линии ГТУ) Содержание и объем курсовой работы определяется заданием, выдаваемым каждому студенту на специальном бланке, подписываемым руководителем проекта. В задании указывается: тема работы, исходные данные для расчета, содержание расчетно-пояснительной записки с указанием подлежащих разработке вопросов, перечень графического материала, дата выдачи задания и срок представления готовой работы к защите. В исходных данных задаются мощность, назначение и тип ГТУ, вариант исполнения тепловой схемы, отправные значения начальных температур газа и воздуха. Каждый вариант заканчивается определением основных технико-экономических показателей рассчитанной тепловой схемы ГТУ и выводом относительно её применения. Для полноты картины изложения в приложении даны примеры расчета тепловой схемы в пяти вариантах исполнения. При дипломном проектировании перед студентом ставится более сложная задача, чем повторение расчета уже существующих схем. В дипломном проекте студент должен разработать вариант усовершенствованной или комбинированной тепловой схемы с её технико-экономическим обоснованием. С этой целью в учебном пособии приводятся сведения по наиболее перспективным комбинированным тепловым схемам и комбинированным теплообменным аппаратам газотурбинных установок. При написании учебного пособия авторы стремились собрать воедино разрозненный по литературным и другим источникам материал для более четкого и полного представления студенту о характере и содержании работы, которую ему предстоит выполнить. При этом были использованы общепринятые в турбостроении обозначения, сокращения и символы.
1. Современные энергетические, приводные и транспортные ГТУ в подавляющем большинстве случаев выполняются по простейшим схемам и по схемам с утилизацией тепла отработавших газов (рис.1). Соответствующие им циклы в T-S диаграмме представлены на рис. 2. Основные технико-экономические характеристики отечественных и зарубежных приводных ГТУ приведены в таблицах 1, 2, 3. Предпочтение отдается многовальным ГТУ, двух-, трех-, четырехвальным, с выделенной силовой турбиной, с размещением всех компрессоров и турбин в одном общем корпусе, используя уникальную компоновку турбомашин “вал в вале”, что обеспечивает более высокую экономичность на всех режимах работы, чем одновальные. В таких устаноках каждый вал имеет свою, близкую к оптимальной частоту вращения, определяемую приводом (рис. 1г, 1д). Промежуточное охлаждение в схемах ГТУ находит пока ограниченное применение и по технико-экономическим соображениям может быть обосновано в ГТУ с начальной температурой газа перед ТВД выше 1000°С. В таких установках оптимальная степень повышения давления будет выше popt > 20 и для её обеспечения необходимо несколько последовательно включенных цикловых компрессоров. Поиски путей оптимизации таких ГТУ привели к созданию трех- и четырехвальных ГТУ с компоновкой агрегатов в одну линию. Два или три последовательно включенных компрессора имеют оптимальные характеристики и самостоятельный турбинный привод. При этом один вал проходит внутри другого вала. В качестве силовой используется последняя турбина (рис. 1г, 1д). Такое решение было использовано в ГТУ авиационного и судового типов. При наличии нескольких последовательно включенных компрессоров появляется возможность внутреннего промежуточного охлаждения воздуха. В рассматриваемом случае оптимальным будет являться воздухоохладитель смешивающего типа с водоиспарительным охлаждением. Причем во избежание влажного сжатия в первых ступенях последующего компрессора впрыск воды в воздухоохладителе должен осуществляться в количестве, обеспечивающем состояние воздуха перед компрессором близкое к линии насыщения (точка росы) при отсутствии капельной влаги. В зависимости от компоновки агрегата воздухоохладитель может выполняться встроенным между компрессорами (рис.3) или выносным. Первый вариант более предпочтителен, так как практически не увеличивает габариты и массу агрегата, но вместе с тем позволяет осуществлять водоиспарительное охлаждение (ВИО) воздуха до линии насыщения. Например, расстояние между КНД и КВД в авиационных и судовых установках достаточное для испарения влаги при заданных параметрах и для выполнения ВИО между КНД и КВД. Водоиспарительное охлаждение воздуха до линии насыщения может осуществляться также при входе атмосферного воздуха в компрессор для любой ГТУ, выполненной по любой из представленных на рис.1 схем, во всех случаях, когда из соображений повышения экономичности ГТУ требуется охлаждение всасываемого воздуха (районы с сухим и жарким климатом).
Таблица 1 Основные технико-экономические характеристики отечественных ГТУ
Таблица 2
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Последнее изменение этой страницы: 2017-01-27; просмотров: 633; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.220 (0.012 с.) |