Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Микроконтроллеры. Отличие микроконтроллера от универсальных микропроцессорных систем.Содержание книги
Поиск на нашем сайте
МК – разновидность микропроцессорной системы (однокристальные ЭВМ), орие-нтированная на реализацию алгоритмов управления техническими устройствами и технологическими процессами. МК проще, чем универсальные ЭВМ: 1)малый объем памяти МК реализует за-ранее известные несложные алгоритмы, и для размещения программ им требуется емкость памяти на несколько порядков <, чем у ЭВМ широкого применения. 2)менее разнообразный состав внешних устройств: параллельный и последова-тельный порты ввода-вывода, таймеры, АЦП и ЦАП, широтно-импульсные мо-дуляторы. |
Применение МК поддерживается такими областями массового производства, как бытовая аппаратура, станкостроение, автомобильная промышленность и т.д. Первые МК выпущены фирмой Intel в 1976 г. На рынке используются МК фирмы Atmen (AT 88…), Microchip (PIC). В России большое распространение по-лучили МК фирмы Microchip: 1)мощная поддержка разработчиков со стороны фирмы и низкая стоимость МС. 2)объединили все передовые технологии, применяемые в производстве МК: разви- тая RISC-архитектура; минимальное эне-ргопотребление; ПЗУ, программируемое пользователем; возможность защиты ко- да программы от несанкционированного доступа и изменения. 83.Память микроконтроллера. Используется Гарвардская архитектура. Память программ – постоянная память объемом 1024 слова. Разрядность ячей- ки 14 бит. Занесение инф-ции осуществляется с помощью программатора. Память данных – ОП емкостью 256 Байт. Память данных разбита на 2 банка. Ка- ждый банк содержит 128 байт. FFh 80h банк 1 7Fh 00h банк 0 Диапазон адресов Банка 0: 00h–7Fh. Диапазон адресов Банка 1: 80h–FFh. Каждый банк содержит спец. регистры и РОНы (ОЗУ пользователя). Спец. регистры применяются для хране- ния битов состояния, определяющих ра- боту портов ввода-вывода, таймеров и др. модулей МК. Переключение банков происходит при помощи 5 разряда (RPQ) регистра STATUS. В памяти данных находятся 68 РОНов, которые отображаются на 2 банка. 84.Устройство управление микроконтроллера. - регистр команд; - счетчик команд; - микропрограммное УУ; - очередь команд. Счетчик команд (PC) хранит адрес кома- нды и увеличивает свое состояние перед считыванием команды из памяти. Раз-рядность счетчика команд 13 бит. Младший байт счетчика является полно- стью доступным для чтения и записи ре-гистрам. Разрядность регистра команд 14 бит. По тактовому сигналу, поступающему на вход OSC1 МК, формируются 4 тактовые не перекрывающиеся последовательности (Q1, Q2, Q3, Q4). Командный цикл состоит из двух циклов: 1)выборка команд; 2)выполнение команд. Длительность командного цикла 8 тактов. Во время выполнения текущей команды из памяти считывается следующая кома- нда и загружается в очередь команд. Та- ким образом, командный цикл – 4 такта. Команды передачи управления выполня- ются за 8 тактов, т.к. очередь команд очи- щается. Типы данных: Разрядность данных 8 бит. 1)целые данные без знака (0–255). 2)целые данные со знаком хранятся и об-рабатываются в дополнительном коде (-128–127). МК содержит 8-разрядный рабочий ре- гистр (аккумулятор). 85.АЛУ микроконтроллера. Арифметические операции: сложение, вычитание. Логические операции: логическое сло- жение ИЛИ, логическое умножение И, логическое отрицание НЕ, исключаю- щее ИЛИ (неравнозначность). По результату работы АЛУ формирует флаги: - С – флаг переноса; - Z – флаг нуля; - DC – флаг дополнительного переноса (заема) из младшей тетрады в старшую. Флаги хранятся в спец. регистре STATUS в разрядах [2–0]. Типы данных: 1)целые без знака. 2)целые со знаком (хранятся в дополни-тельном коде). Разрядность данных 8 бит. 86.Таймер микроконтроллера (TMR0). Разрядность таймера 8 бит. Таймер – 8-разрядный суммирующий счетчик. Таймер может считать внутренние сигна- лы микроконтроллера (частота сигналов на входе таймера: fTMR0=fМК/4), либо вне- шние сигналы, поступающие на вход RA4. При переполнении таймера, т.е. переклю-чении его из состояния FF в состояние 00, может формироваться прерывание. Сторожевой таймер (WDT): Представляет собой комбинацию встро-енного RC-генератора и счетчика, при переполнении которого формируется сброс МП. Время выдержки сторожевого таймера зависит от температуры, U питания и коэффициента деления предделителя. Выдержка с подключением предделите- ля может достигнуть 2.5 секунды. Номи-нальная выдержка без предделителя 18 нс. Главным назначением WDT является борьба с аппаратными сбоями устройства. В результате сбоя может возникнуть за-висание программы. Если WDT включен, то нормально работа-ющая программа должна периодически обнулять сторожевой таймер, не допус- кая его сбоя. Когда происходит сбой, таймер переста- ет программно обнуляться. После его переполнения произойдет сбой процессора и повторная инициализация устройства (программа начнет выполнять- ся с самого начала). 87.Система прерывания микроконтроллера. VR имеет аппаратные маскируемые прерывания от 4 источников: 1)Прерывание от TMR0. 2)Прерывание по окончании записи в энергонезависимую память EEPROM. Это внутренние прерывания. 3)Прерывания по сигналу на линии RB0 (фронтальные прерывания). 4)Прерывания при изменении сигналов на линии RB4-RB7 (по уровню). Это внешние прерывания. Все прерывания являются маскируемыми. Разрешить или запретить все прерывания можно с помощью разряда GIE регистра INTCON. Также можно разрешить или запретить каждый из видов прерываний. EEIE – бит разрешения прерывания по завершению записи в EEPROM. TOIE – бит разрешения прерывания по переполнению таймера TMR0. INTE – бит разрешения внешнего пре-рывания со входа RB0. RBIE – бит разрешения прерывания по изменению сигнала на линиях RB4-RB7. Обработчик прерывания 1, адрес вектора прерываний 4. С адреса 4 начинается об-работчик прерывания. Регистр INTCON содержит флаг Биты событий, которые устанавливаются в 1 независимо от того, разрешен данный вид прерываний или нет в случае появ- ления соответствующего события TOIF. | TOIF – флаг переполнения TMR0.
INTF – флаг изменения сигнала на линиях RB0.
RBIF – флаг изменения сигнала на линиях RB4-RB7.
Например, произошло прерывание тайме- ра TMR0. Бит TOIF устанавливается в 1. проверяется состояние бита GIE. Если GIE=1, проверяется состояние бита TOIE. Если TOIE=1, прерывание от таймера ра-зрешено. В счетчик команд загружается адрес 4, и начинает выполняться обрабо- тчик прерывания, начинающийся с 4 ад- реса памяти программ.
88.Порты ввода-вывода микроконтроллера.
МК имеет 2 порта ввода-вывода: PORT A, PORT B.
PORT A:
Это 5-разрядный порт (RA4-RA0).
Направление передачи данных для каж- дой линии программируется отдельно установкой или сбросом битов 4-0 реги- стра TRIS A.
Установка разряда в 1 настраивает соот-ветствующую линию на ввод. Установка бита в 0 настраивает соответствующую линию на вывод.
PORT B:
Это 8-разрядный двунаправленный порт (RB7-RB0).
Направление передачи данных на линии определяется установкой в 1 или сбросом разрядов регистра TRIS B.
Установка разряда в 1 настраивает соот-ветствующую линию на ввод. Установка бита в 0 настраивает соответствующую линию на вывод.
Все выводы порта B имеют встроенную отключаемую нагрузку в виде регистров, подключенных к шине питания (подтя-гивающие резисторы).
Нагрузка включается и выключается од-новременно для всех выводов при помо- щи 7 разряда (RBPU) спец. регистра OPTION_REG.
RBPU=1 – нагрузка отключена.
RBPU=0 – нагрузка включена.
Для линий, настроенных на вывод, нагру- зка автоматически отключается.
Линия RB0 может использоваться как вход прерывания по фронту.
Линии RB4-RB7 – как входы прерывания по входу.
89.Архитектура вычислительных систем. Основные определения. Классы архитектуры вычислительных систем.
ВС – это совокупность взаимосвязанных и взаимодействующих процессоров или ЭВМ, периферийного оборудования и ПО, предназначенная для сбора, хране- ния, обработки и распределения инфо-рмации.
ВС бывают:
*многомашинные, *многопроцессорные.
Многомашинные ВС: несколько процес-соров, входящих в ВС, не имеющих об- щей ОП, а имеют каждый свою локаль- ную ОП.
Эффект от применения такой ВС может быть получен только при решении задач, имеющих спец. структуру: задача должна разбиваться на столько слабо связанных подзадач, сколько компов в системе.
Многопроцессорные ВС: наличие в компь-ютере нескольких процессоров означает, что параллельно может быть организова- но много потоков данных и много потто- ков команд. Таким образом, параллельно могут выполняться несколько фрагментов одной задачи. Такая машина имеет общую ОП и несколько процессоров.
АА АА АА
АЛУ АЛУ АЛУ
ОЗУ
Классы:
|
||||||||||||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 112; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.192.214 (0.007 с.) |