Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Биосинтез и мобилизация гликогена: последовательность реакций, физиологическое значение. Регуляция обмена гликогена. Гликогенозы и агликогенозы.Содержание книги
Поиск на нашем сайте
Синтез гликогена происходит с участием нескольких ферментов: гексокиназы, фосфоглюкомутазы (переводит глюкозо-6-фосфат в глюкозо-1 -фосфат), уридилтрансферазы (образует УДФ-глюкозу), гликогенсинтетазы (переносит глюкозу с УДФ-глюкозы на имеющуюся молекулу гликогена и присоединяет ее 1,4-глико-зидной связью). Таким образом, чтобы удлинить молекулу гликогена на одно звено глюкозы необходимо затратить 2 макроэрга (АТФ и УТФ). Ветвление гликогена происходит под влиянием вет-вящего фермента. Распад гликогена происходит двумя путями: Гидролитический путь идет в лизосомах клеток под действием у-амилазы при участии воды без образования промежуточных продуктов.Фосфоролитический путь (фосфоролиз) идет в цитоплазме под действием фосфорной кислоты с образованием промежуточных продуктов, катализируется несколькими ферментами.Оба способа расщепления гликогена приводят к образованию глюкозы. В мышцах фосфоролиз заканчивается на глюкозо-6-фосфате, так как в них нет глюкозо-6-фосфатазы. Таким образом, только печень является источником глюкозы для крови.Ключевыми ферментами синтеза гликогена являются: гексокиназа и гликогенсинтетаза, распада гликогена — фосфорилаза и глюкозо-6-фосфатаза. Синтез гликогена усиливается инсулином, распад стимулируется катехоламинами, глюкагоном, глюко-кортикостероидами, цАМФ и Са2+. Печень запасает глюкозу в виде гликогена для поддержания постоянной концентрации глюкозы в крови. Ф-ия мышечного гликогена заключ-ся в освобождении глюкозо 6 фосфата, потребляемого в самой мышце для окисления и использования энергии. Гликогенозы. В этом случае нарушен распад гликогена. Гликоген накапливается в клетках в больших количествах, что может привести к их разрушению. Клинические симптомы: увеличение размеров печени, мышечная слабость, гипогликемия натощак. Известно несколько типов гликогенозов. Они могут быть вызваны недостаточностью глюкозо-6-фосфатазы, фосфорилазы или у-амилазы. Агликогенозы вызываются недостаточностью ферментов, участвующих в синтезе гликогена. В результате нарушается синтез гликогена и снижается его содержание в клетках. Симптомы: резкая гипогликемия натощак, особенно после ночного перерыва в кормлении. Гипогликемия приводит к отставанию в умственном развитии. Больные погибают в детском возрасте. 16. Анаэробный распад глюкозы: последовательность реакций, физиологическое значение. Роль анаэробного распада глюкозы в мышцах. Дальнейшая судьба молочной кислоты. Гликолиз — это расщепление глюкозы до молочной кислоты в анаэробных условиях. Гликолиз состоит из двух стадий: подготовительной и главной. В подготовительной стадии глюкоза расщепляется с образованием диоксиацетонфосфата (ДОАФ) и 3-фосфоглицеринового альдегида, при этом расходуются 2 молекулы АТФ; В главной стадии фосфотриозы превращаются в лактат (молочную кислоту), при этом образуются 4 молекулы АТФ. Синтез АТФ в гликолизе происходит путем субстратного фосфорилиро-вания. Таким образом, анаэробное окисление глюкозы приводит к образованию 2 молекул лактата и 2 молекул АТФ. Ключевыми ферментами гликолиза являются: гексокиназа (начальный фермент), фосфофруктокиназа (лимитирующий фермент), пируваткиназа. АТФ и цитрат ингибируют фосфофрукто-киназу, АДФ — активирует. Преимущества гликолиза: быстрый процесс; анаэробный, универсальный процесс. Недостатки гликолиза: малоэффективный процесс; —продуктом гликолиза является лактат, накопление которого в клетках и в крови вызывает метаболический ацидоз. Тормозит тканевое дыхание (эффект пастера). Гликогенолиз — это анаэробное окисление гликогена с образованием молочной кислоты. Окисление каждой отщепленной от гликогена молекулы глюкозы приводит к образованию 3 молекул АТФ. Ключевыми ферментами гликогенолиза являются: фос-форилаза, фосфофруктокиназа и пируваткиназа. Гликогенолиз усиливается катехоламинами, глюкагоном, цАМФ, Са2+. Молочная кислота в печени превращается в пируват (способ утилизации лактата). 17. Аэробный распад глюкозы: последовательность реакций, физиологическое значение. Роль аэробного распада глюкозы в мышцах при мышечной работе. Роль аэробного распада глюкозы в мозге. Аэробный гликолиз – процесс окисления глюкозы до пировиноградной кислоты в присутствии кислорода. 2 этапа: подготовительный (глюкоза фосфорилируется и расщ-ся на 2 молекулы фосфотриоз (-2 АТФ))и сопряженный с синтезом АТФ (фосфотриозы превращаются в пируват (+10 АТФ)). Клетки мозга расходуют до 100г глюклзы в сутки, окисляя ее аэробным путем, поэтому недостаточное снабжение мозга глюкозой или гипоксия проявляются симптомами, свидетельств-ми о нарушении ф-ии мозга. Аэробный гликолиз способствует метаболизму клеток опухолей. 18. Биосинтез глюкозы (глюконеогенез): возможные предшественники, последовательность реакций. Глюкозо-лактатный цикл (цикл Кори) и глюкозо-аланиновый цикл: физиологическое значение. Значение и регуляция глюконеогенеза из аминокислот. Глюконеогенез - это синтез глюкозы из неуглеводных предшественников (лактата, пирувата, оксалоацетата, глицерина, аминокислот). По направлению реакций ГНГ напоминает гликолиз наоборот. Однако ГНГ не является простым обращением гликолиза, т.к. в нем три фермента (гексокиназа, фосфофруктокиназа, пируваткиназа) катализируют необратимые реакции и поэтому в глюконеогенезе работать не могут. Они заменяются другими ферментами. Так, пируваткиназа заменена двумя ферментами пируваткарбоксилазой и фосфоенолпируваткарбоксикиназой (ФЕПКК); фосфофруктокиназа - фруктозо-1,6-дифосфатазой; гексокиназа - глюкозо-6-фосфатазой. На образование 1 молекулы глюкозы расходуется 6 макроэргов (4 АТФ и 2 ГТФ). ГНГ локализован в цитоплазме гепатоцитов печени, в клетках коры почек и тонкого кишечника. Около 90% лактата, используемого в глюконеогенезе, поступает в печень, 10% - в почки и тонкий кишечник. Значение глюконеогенеза: 1. Является важным источником глюкозы в организме; 2. Удаляет большую часть лактата из клеток и тканей, работающих в анаэробных условиях, что предохраняет их от метаболического ацидоза. ГНГ особенно важен после интенсивной мышечной работы, когда накапливается лактат. 20-30% лактата может окисляться до СО2 и Н2О в самой мышце, 70-80% используется в ГНГ на образование глюкозы. Так как в мышце нет ГНГ, лактат из нее поступает в кровь, затем в печень, где превращается в глюкозу, которая кровью разносится всем органам и тканям, в том числе и мышцам. Таким образом, между печенью и мыщцей существует взаимосвязь, так называемый цикл Кори (глюкозо-лактатный цикл). Регуляция глюконеогенеза: Ключевыми ферментами ГНГ являются: пируваткарбоксилаза, ФЕПКК, фруктозо-1,6-дифосфатаза, глюкозо-6-фосфатаза. ГНГ усиливают: глюкагон, катехоламины, глюкокортикостероиды, ацетил-КоА, АТФ, цАМФ, Са2+. Тормозят глюконеогенез: инсулин, АДФ, этанол. Источники глюкозо-6-фосфата: 1) во всех клетках образуется из глюкозы в ходе гексокиназной реакции; 2) в печени и мышцах образуется в ходе фосфоролиза из гликогена; 3) в печени, мышцах, тонком кишечнике - в результате ГНГ; 4) в печени - в результате унификации моносахаридов. Пути использования глюкозо-6-фосфата: 1) синтез гликогена; 2) окисление до лактата в анаэробных условиях и до СО2 и Н2О в аэробных; 3) окисление в пентозофосфатном пути; 4)превращение в глюкозу (в печени, тонком кишечнике и коре почек). 19. Пентозофосфатный путь превращения глюкозы. Окислительный путь образования пентоз. Представление о неокислительном пути образования гексоз. Распространение, роль, регуляция. Пентозофосфатный путь (ПФП): Это прямое окисление глюкозо-6-фосфата. Состоит из двух частей: окислительной (необратимой) и неокислительной (обратимой). В ходе окислительной части ПФП при участии глюкозо-6-фосфатдегидрогеназы и 6-фосфоглюконатдегидрогеназы глюкозо-6-фосфат окисляется с образованием рибозо-5-фосфата, СО2, 2 молекул НАДФН. В неокислительной части ПФП из каждых трех молекул рибозо-5-фосфата образуются 1 молекула фосфоглицеринового альдегида и 2 молекулы фруктозо-6-фосфата. Дальнейшая судьба этих метаболитов известна: они могут либо окисляться в гликолизе и, в зависимости от условий, превращаться в лактат или пируват, либо использоваться в ГНГ на образование глюкозы. Если метаболиты окислительной части ПФП будут использоваться в ГНГ, тогда будет иметь место замыкание процесса, то есть ПФП примет вид цикла. Для протекания неокислительной части ПФП необходим витамин В1. Значение ПФП: 1) энергетическое - образующиеся метаболиты окислительной части могут использоваться в гликолизе; 2) синтетическое - связано с использованием рибозо-5-фосфата и НАДФН. Рибозо-5-фосфат используется на синтез нуклеотидов, которые необходимы для образования коферментов, макроэргов, нуклеиновых кислот. НАДФН необходим для восстановительныхбиосинтезов (для работы редуктаз в синтезе холестерина и жирных кислот; в образовании дезоксирибозы из рибозы); для работы гидроксилаз, участвующих в синтезе катехоламинов, серотонина, стероидных гормонов, желчных кислот, активной формы витамина Д, синтезе коллагена, обезвреживании ксенобиотиков; ПФП локализован в цитозоле клеток. Он особенно активен в тканях эмбриона и плода, лимфоидной и миелоидной тканях, слизистой тонкого кишечника, жировой ткани, эндокринных железах (надпочечники, половые), молочных железах (в период лактации), печени, эритроцитах, пульпе зуба, зачатках эмали зуба, при гипертрофии органов. ПФП мало активен в нервной, мышечной и соединительной тканях. ПФП способствует прозрачности хрусталика глаза; предупреждает гемолиз эритроцитов; входит в систему защиты от свободных радикалов и активных форм кислорода. Регуляция ПФП: ключевыми ферментами являются - глюкозо-6-фосфатдегидрогеназа, 6-фосфоглюконатдегидрогеназа, транскетолаза. Активность ПФП увеличивается при повышении отношения НАДФ+/ НАДФН, а также под влиянием инсулина и йодтиронинов. ПФП ингибируют глюкокортикостероиды.
|
||||
Последнее изменение этой страницы: 2017-01-24; просмотров: 1172; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.252.243 (0.007 с.) |