Окислительное декарбоксилирование пирувата и цикл Кребса: последовательность реакций, связь с дыхательной цепью, регуляция, значение. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Окислительное декарбоксилирование пирувата и цикл Кребса: последовательность реакций, связь с дыхательной цепью, регуляция, значение.



Окислительное декарбоксилирование пирувата катализируется (ПДГ). ПДГ - это ком­плекс из трех ферментов, для работы которого требуются следующие вита­мины: В1 (тиамин), В2 (рибофлавин), РР (никотинамид), пантотеновая и липоевая кислоты. ПДГ осуществляет декарбоксили­рование ы) и окисление (отщепление водорода) молекулы пирувата. Продукты реакции и их дальнейшие превращения: СО2. В основном выделяется с выдыхаемым воздухом, а также используется для карбок­силирования субстратов. Ацетил-КоА. Расщепляется в цикле Кребса до СО2 и Н2; НАДН. Окисляется в дыхательной цепи.

Регуляция ПДГ: ПДГ может быть в двух формах: фосфорилированной (неактивной) и дефосфорилированной (активной). АТФ, НАДН, ацетил-КоА, жирные кислоты ингибируют ПДГ, инсулин активирует. Цикл Кребса:

Таким образом, ацетил-КоА распадается в цикле Кребса до СО2 и Н2 , который присоединяется к кофакторам де­гидрогеназ. В ходе цикла Кребса образуется сукцинил-КоА, который содержит макроэргическую связь (первичный макроэрг). Гидролиз этой связи со­пряжен с реакцией фосфорилирования АДФ, при этом образу­ется АТФ. Синтез АТФ с использованием энергии макроэргической связи субстрата на­зывается субстратным фосфорилированием. Конечные продукты цикла Кребса и пути их использования:

- СО2 выдыхается с воздухом, небольшая часть используется в реак­циях карбоксилирования.

- НАДН и ФАДН2 окисляются в дыхательной цепи.

- АТФ используется на различные виды работы: 1) механическая работа (сокращение мышц, движение сперматозоидов, лейкоцитов) 2) осмотическая работа или активный транспорт, то есть движение против градиента концентрации. 3) химическая работа, когда энергия АТФ используется в биосинте­тических процессах и на активацию субстра­тов;4) электрическая работа (генерация биотоков); 5) при передаче гормонального сигнала (для работы аденилатциклазы и протеинкиназы).

Регуляция цикла Кребса: осуществляется путем влияния на ключевые ферменты: цитратсинтазу (начинает процесс), изоцитратдегидрогеназу (лимитирующий фермент), 2-ок-соглутаратдегид­ро­геназу (фермент, стоящий на развилке). Цитратсинтазу активируют оксалоацетат и ацетил-КоА, ингибируют АТФ, НАДН, длинноцепочные ацилы-КоА. Изоцитратдегидрогеназа является аллостерическим ферментом. Ее акти­вируют АДФ, Са2+, цАМФ. Ингибируют изоцитратдегидрогеназу АТФ, НАДН, НАДФН. 2-оксоглутаратдегидрогеназу активируют Са2+ и цАМФ, ингибирует сукцинил-КоА.

Значение цикла Кребса:

- катаболическое и энергетическое (цикл Кребса является общим конеч­ным путем распада для метаболитов всех классов соединений; в нем обра­зуется АТФ в результате субстратного фосфорилирования; он является главным поставщиком водорода для дыхательной цепи);

- анаболическое или биосинтетическое Промежуточные метаболиты цикла Кребса используются на синтез дру­гих соединений. Например, из оксалоацетата, 2-оксоглутарата и сукцината образуются аминокислоты; из окса­лоацетата - глюкоза и другие углеводы;

11. Дыхательная цепь, компоненты, структурная организация. Электрохимиче­ский потенциал, его значение.

Дыхательная цепь: Дыхательная цепь (цепь переноса электронов) - это цепь сопряженных окислительно-восстано­ви­тель­ных реакций, в ходе которых водород, отщеп­ленный от субстратов, переносится на кислород с образованием воды и выделением энергии. Назначение дыхательной цепи - генерирование энергии.Компоненты дыхательной цепи называются дыхательными переносчиками. Большинство из них (кроме убихинона) являются сложными белками.

 

Субстраты НАД-зав. Субстраты ФАД-зав.

дегидрогеназ дегидрогеназ

 
 

 


Характеристика дыхательных переносчиков: НАДН-дегидрогеназа (НАДН-ДГ) (в схеме - ФП) - это флавинза­висимый фермент, небелковой частью которого является ФМН и железо-серные центры. НАДН-ДГ встроена во внутреннюю мембрану митохонд­рий. Она осущест­вляет перенос водорода с НАДН вначале на ФМН с обра­зованием ФМНН2, затем переносит водород с ФМНН2 на железо-серные центры и только потом на КоQ, при этом последний восстанавливается до КоQН2. Таким образом, НАДН-ДГ ката­лизирует реакцию: НАДН2 + КоQ → НАД+ + КоQН2.

КоQ (убихинон)- это небелковый переносчик, растворимый в ли­пидах. Восстановленная форма убихинона (КоQН2) называется убихи­нол. Убихинон может перемещаться в липидной фазе внутренней мембраны митохондрий, пред­ставляя, таким об­разом, лабильный субстрат для ферментов встроенных в мембрану. Цитохромы (b, c1, c, a, а3) - это сложные белки, небелковой частью которых является гем, содержащий Fe3+. Прини­мая электрон, железо трех­валентное переходит в железо двухвалентное, отдавая электрон - переходит опять в трехва­лентное.

Fe3+ + e- Fe2+

Fe2+ - e- Fe3+

КоQН2-ДГ
Комплекс цитохромов b-c1 является ферментом (КоQН2 -дегидро-геназой). Он переносит электроны с КоQН2 на цитохром c, при этом железо цито­хрома восстанавливается до двухвалентного. Протоны атомов водорода выбрасываются в межмембранное пространство.. Таким образом, осуществляется реакция:

Ко QН2 + 2c(Fe3+) KoQ +2Н+ + 2c(Fe2+)

a-a3
Комплекс цитохромов a-a3 является оксидазой. Он переносит элек­троны с цитохрома c на кислород, превращая последний в ион (О2-). Цито­хромоксидаза катализирует реакцию:

2c(Fe2+) + 1/2 О2 2c(Fe3+) + О2-

12. Окислительное фосфорилирование АДФ. Механизм. Сопряжение и разоб­щение окисления и фосфорилирования в дыхательной цепи. Коэффициент Р/0. Регуляция дыхательной цепи.

Механизм окислительного фосфорилирования. Компоненты дыхательной цепи находятся во внутренней мембране митохондрий. Они расположены таким образом, что, передавая электроны по цепи, одновременно выталкивают протоны водорода на наружную сторону мембраны в межмембранное пространство. В результате, на наружной стороне мембраны создается избыток протонов водорода (+ заряд), а с внутренней стороны – недостаток (- заряд). Это проявляется в возникновении мембранного электрохимического потенциала DmН+, который складывается из разности зарядов на мембране (Dj) и разности рН (снаружи более кислое, внутри – более щелочное). Протоны водорода могут возвращаться в матрикс по протонным каналам, с которыми связана специфическая Н+-АТФаза (АТФ-синтетаза). Обратный ток протонов по каналам в матрикс активирует этот фермент, и он катализирует синтез АТФ из АДФ и Н3РО4. Таким образом, энергия мембранного поценциала преобразуется в энергию макроэргической связи АТФ. АТФ с помощью фермента транслоказы переносится из митохондрий в цитозоль, где и ис­пользуется. Сопряжение и разобщение в дыхательной цепи: Сопряжение в дыхательной цепи - это такое состояние, когда окис­ление (перенос электронов) сопровождается фос­форилированием, то есть синтезом АТФ. Разобщение - это такое состояние дыхательной цепи, когда окисле­ние идет, а фосфорилирование не происходит, то есть пункты фосфори­лирования выключены полностью или частично. В этом случае вся или какая-то часть обра­зующейся энергии выделяется в виде тепла. Сопряжен­ность дыхательной цепи можно оценить по коэффициенту Р/О. Коэффициент Р/О равен числу мо­лей АТФ, образующихся из АДФ и Н3РО4, на 1 грамм-атом поглощенного кислорода. Разобщение в дыхательной цепи могут вызывать липофильные ве­щества, которые способны переносить протоны водорода с внешней сто­роны внутренней мембраны митохондрий на внутреннюю, минуя АТФ-синтетазу. В ре­зультате вся энергия мембранного потенциала будет рассеи­ваться в виде тепла. Разобщение вызывают: 2,4-ДНФ (динитрофенол), многие яды промышлен­ных производств, бактериальные токсины. Разобщители повышают скорость переноса электронов по дыхательной цепи и выводят ее из под контроля АТФ. Регуляция дыхательной цепи:

1. АДФ стимулирует работу дыхательной цепи. Это явление называется дыхательным контролем. 2. АТФ тормозит работу дыхательной цепи и потребление кислорода.

3. Адреналин и глюкагон активируют работу дыхательной цепи.

Блокаторы дыхательной цепи:

1. Ротенон блокирует дыхательную цепь на участке НАДН – КоQ.

2. Амитал, антимицин - на участке между цитохромами b и c1.

3. Цианиды и окись углерода блокируют цитохромоксидазу, при этом вся дыхательная цепь не работает.

13. Субстратное фосфорилирование АДФ. Отличия от окислительного фосфо­рилирования. Основные пути использования АТФ. Цикл АДФ-АТФ. Понятие о свободном окислении и его значение. Тканевые особенности окислитель­но-восстановительных процессов.

Субстратное фосфорилирование образ-е энергии в виде АТФ за счет разрыва макроэргической связи. Отличия разные источники энергии, для окислительного необходимы движение электронов в дых цепи, для субстратного необ-ма энергия макроэргической связи. АТФ используется:

1. мех-ая работа(сокр мышц, дв-е сперматозоидов, лейкоцитов);

2 осматич-я работа или активный транспорт,т.е. движение против градиента концентрации;

3. хим работа, энергия АТФ исп-ся в биосинтет-х процессах и на активацию Субстрата;

4 электрическая (генерация биотопов);

5. при передачи гормонального сигнала (для работы аденилатциклазы и протеинкиназы).

АТФ-АДФ – основной мех-м обмена энергии в биологических системах. Использование АТФ как источника энергии возможно только при условии непрерывного синтеза АТФ из АДФ за счет энергии орг соединений. Нефосфорилирующее (свободное) окисление- Это окисление без образования АТФ. Ферменты свободного окисления: оксидазы, оксигеназы, неко­торые дегидрогеназы. Значение свободного окисления:

- терморегуляция;

- Образование биологически важных соединений (катехоламинов, глюкокорти­костероидов, коллагена, активация витамина Д и т.д);

- обезвреживание ксенобиотиков (ядов, токсинов, лекарств, ве­ществ бытовой химии).

Тканевые и возрастные особенности окислительных процессов. Анаэробные ткани могут получать энергию без кислорода. Такими тканями являются: скелетные мышцы, эритроциты, пери­ферические нервы, мозговое вещество почек, кость, хрящ, соединительная ткань. Аэробные ткани получают энергию с использованием кислорода и полностью зависят от кровотока. К таким тканям относятся: головной мозг, сетчатка глаза, сердце, кора почек, печень, слизистая тонкого кишечника. Потребление кислорода, а значит, и интенсивность окислительных процес­сов с возрастом падают. Пути использования АТФ: 1) механическая работа (сокращение мышц, движение сперматозоидов, лейкоцитов). 2) осмотическая работа или активный транспорт (т.е. движение против градиента концентрации). 3) химическая работа, когда энергия АТФ используется в биосинтетических процессах и на актив. субстратов. 4) электрическая работа (генерация биотоков), при передаче гормонального сигнала.



Поделиться:


Последнее изменение этой страницы: 2017-01-24; просмотров: 1846; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.220.120 (0.012 с.)