Биологический код. Основные компоненты белоксинтезирующей системы. Биосинтез белка. Механизм. Адапторная функция трнк и роль мрнк в этом процессе. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Биологический код. Основные компоненты белоксинтезирующей системы. Биосинтез белка. Механизм. Адапторная функция трнк и роль мрнк в этом процессе.



Биологический код. Основные компоненты белоксинтезирующей системы. Биосинтез белка. Механизм. Адапторная функция тРНК и роль мРНК в этом процессе.

Генетический код – это система записи генетической информации в молекуле нуклеиновой кислоты о строении молекулы полипептида, а именно, о количестве, последовательности расположения и типах аминокислот. В одном гене записана информация об одной полипептидной цепочке, т.е. о первичной структуре белка.

Ген– единица наследственного материала (генетической информации); участок молекулы ДНК (у высших организмов) и РНК (у вирусов и фагов), содержащий информацию о первичной структуре одного белка. Совокупность всех генов организма составляет генотип. Каждый ген ответствен за синтез определенного белка (полипептидной цепи). Контролируя его образование, ген управляет всеми химическими реакциями организма, а потому определяет его признаки. На ДНК-матрице гена синтезируется информационная РНК, которая затем сама служит матрицей для синтеза белка. Следовательно, ген служит основой системы ДНК – РНК – белок. Важнейшее свойство гена – сочетание их высокой устойчивости (неизменяемости в ряду поколений) со способностью к наследуемым изменениям – мутациям, служащим основой изменчивости организмов, дающей материал для естественного отбора. Кодон (триплет)– дискретная единица генетического кода, состоящая из 3 последовательных нуклеотидов, в молекуле ДНК или РНК. Последовательность кодонов в гене определяет последовательность аминокислот в полипептидной цепи белка, кодируемого этим геном. Из 64 кодонов 61 кодирует включение 20 аминокислот (одну аминокислоту может кодировать несколько кодонов одинакового действия), а 3 служат «точками», оканчивающими процесс синтеза полипептида.Генетический код характеризуется триплетностью, т.е. три нуклеотида, расположенные последовательно в цепочке нуклеиновой кислоты (ДНК или РНК), образуют триплет или кодон, который кодирует одну аминокислоту и ее местоположение в пептидной цепи. Кодоны различаются последовательностью и типами нуклеотидов (азотистых оснований). Существует 64 типа кодонов, что соответствует количеству возможных сочетаний из 4 (4 типа нуклеотидов, различающихся азотистыми основаниями) по 3 (43). 61 из них – информативные кодоны, они определяют (кодируют) аминокислоты. 3 кодона (в ДНК – АТТ, АТЦ, АЦТ, соответственно в иРНК – УАА, УАГ, УГА) называют стоп-кодонами, они обеспечивают окончание синтеза белковой цепочки. Кодон ТАЦ в ДНК или АУГ в иРНК (кодирует аминокислоту метионин) – стартовый, т.е. стоит первым в гене и с него начинается синтез пептида. существуют кодоны – синонимы, которые различаются часто только третьими нуклеотидами (азотистыми основаниями). один кодон кодирует только одну аминокислоту, т.е. в нем может быть записана информация только об одной аминокислоте – иными словами, генетический код однозначен.Генетический код обладает также неперекрываемостью, это означает, что кодоны располагаются линейно, и один нуклеотид входит в состав только одного кодона; и непрерывностью – кодоны не отделены один от другого, располагаются в цепи нуклеиновой кислоты друг за другом, т.е. расстояние между кодонами соответствует расстоянию между нуклеотидами, а какие-либо сигналы, указывающие на начало или конец кодонов, отсутствуют.Универсальность генетического кода подразумевает, что генетический код всех организмов характеризуется одинаковыми свойствами (триплетностью, вырожденностью и т.д.); и что смысл кодонов у всех организмов один и тот же (исключение составляют некоторые кодоны митохондрий и бактерий).

Основные компоненты белоксинтзирующей сис-мы:все 20АК, входящ в структуру белков организма человека,должны присутствовать в достаточном кол-ве. мРНК-содержит информ о структуре синтезируемого белка и используется в кач-ве матрицы. тРНК-«адапторные молекулы»,т.к к ацепторному концу этих молекул может быть присоед опред АК, а с помощью антикодона они узнают специфический кодон на мРНК. В процессе синтеза белка на рибосоме связыв антикодонов тРНК с кодонами мРНК происходит по принципу комплементарности и анти//.

41. Регуляция биосинтеза белка. Индукция и репрессия синтеза белка на при­мере функционирования лактозного оперона кишечной палочки. Ингибиторы матричных биосинтезов: лекарственные препараты, вирусные и бактери­альные токсины.

Регуляция: в генетическом аппарате клетки существуют сообщества структурных генов, так называемых оперонов, каждый из которых ответствен за взаимосвязанный синтез ряда специфических белков. Деятельность оперона в качестве поставщика мРНК контролируется геном-оператором, который либо разрешает, либо запрещает запуск гомологической репликации серии мРНК на ДНК-матрице. В свою очередь, функция гена-оператора контролируется пространственно изолированным от него геном-регулятором, который продуцирует мРНК, необходимую для синтеза белка-репрессора. Именно белок-репрессор, будучи присоединен к гену-оператору, блокирует его функцию. Более того, сам белок-репрессор подвержен действию аллостерических эффекторов, которые, соединяясь с ним, так изменяют его третичную структуру, что либо стимулируют, либо ингибируют возникновение комплекса между репрессором и геном-оператором. В качестве аллостерических эффек- тов часто выступают субстраты (индуцированный синтез ферментов). Накапливаются данные об участии в контроле биосинтеза мРНК гормонов и ряда других соединений. Эта регуляция осуществляется также на уровне метаболитов при активировании и переносе аминокислот; на уровне макромолекул при биосинтезе ДНК, различных видов РНК и рибосом; на уровне субклеточных структур (формирование полисом, роль белково-липид- ных мембран и т. п.), клетки (ядерноцитоплазменные взаимоотношения и др.), органа и организма (гормональная регуляция) и, наконец, на уровне среды (например, зависимость точности считывания кода белкового синтеза от температуры). Индукция: в отсутствии индуктора белок-репресор связан с операторорм, след-но присоед-е репрессора к оперпатору препятствкет связыванию РНК-полимеразы с промотором, и транскрипция не идет, в присутствии индуктора РНК полимераза мвяз-ся с промотором и транскрибирует структурные гены. Репрессия: корепрессор (метаболит реак-ии) связ-ся с неактивным репрессором, репрессор акивируется: встает к гену оператору и транскрипция превращается. Ингибиторы антибиотики (рифампицин), КА, ГКС, большие дозы йотиронинов.

 

42. Гемоглобин. Строение. Синтез и распад гемоглобина. Формы билирубина. Пути вы­ведения билирубина и других желчных пигментов. Желтухи.

Гемоглобин относится к хромопротеидам. Состоит из белка глобина и простетической группы. Глобин — тетрамер, образованный двумя а- и двумя р-полипеп-тидными цепями. Гем содержит 4 пиррольных кольца, соединенных метиновыми мостиками, 4 метильных группы, 2 винильных радикала, 2 остатка пропионовой кислоты и двухвалентное железо, которое присоединено к азотам пиррольных колец. Гем присоединяется к гистидиновому остатку глобина. Для образования гема требуются: железо, глицин, сукцинил-КоА, витамины В6, В12 и фолиевая кислота.Гем является регулятором синтеза полипептидных цепей глобина. Распад гемоглобина: Гемоглобин окисляется в метгемоглобин (Fe3+). → вердогло-бин (кольцевая структура гема разрывается). → биливердин (отщепление глобина, железо уходит с помошью трансферина. →свободный билирубин + альбумин → в печень. Билирубин (фермент УДФ-глюкуро-нилтрансфераза) + с глюкуроновой кислотой→ связанный билирубин - глюкуроновая кислота→ЖКТ и почки→ ме-зобилиноген всасывается в тонком кишечнике → печень, где уробилиноген необратимо разрушается до моно- и дипирролов. В толстом кишечнике мезобилиноген восстанавливается анаэробными бактериями до стеркобилиногена. Гемолитическая желтуха —при массивном внутрисосудистом или тканевом распаде эритроцитов (переливание несовместимой по группе и резус-фактору крови и т.д.). Паренхиматозная желтуха возникает вследствие повреждения клеток печени (вирусами, токсическими гепатотроп-ными соединениями, при циррозах). Механическая желтуха возникает при нарушении оттока желчи в кишечник (желчно — каменная болезнь, опухоль головки поджелудочной железы). Физиологическая желтуха новорожденных. У плода и у новорожденного количество эритроцитов и содержание гемоглобина в эритроцитах в расчете на единицу массы тела больше, чем у взрослых. В течение нескольких недель после рождения количество гемоглобина в крови новорожденного приближается к величине, характерной для взрослых. В этот период относительная скорость распада эритроцитов больше, чем в последующее время. В то же время имеется возрастной недостаток фермента конъюгации билирубина — глюкуронилтрансферазы, что приводит к повышению свободного билирубина в крови. Гемолитическая болезнь новорожденных развивается при резус-конфликте или при несовместимости по группе крови матери и плода, у резус-отрицательных матерей, беременных резус-положительным плодом.

 



Поделиться:


Последнее изменение этой страницы: 2017-01-24; просмотров: 701; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.248.47 (0.007 с.)