Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Нормальная форма Бойса-КоддаСодержание книги
Поиск на нашем сайте
Рассмотрим следующий пример схемы отношения: СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, СОТР_ИМЯ, ПРО_НОМЕР, СОТР_ЗАДАН) Возможные ключи: СОТР_НОМЕР, ПРО_НОМЕР СОТР_ИМЯ, ПРО_НОМЕР Функциональные зависимости: СОТР_НОМЕР (r) CОТР_ИМЯ СОТР_НОМЕР (r) ПРО_НОМЕР СОТР_ИМЯ (r) CОТР_НОМЕР СОТР_ИМЯ (r) ПРО_НОМЕР СОТР_НОМЕР, ПРО_НОМЕР (r) CОТР_ЗАДАН СОТР_ИМЯ, ПРО_НОМЕР (r) CОТР_ЗАДАН В этом примере мы предполагаем, что личность сотрудника полностью определяется как его номером, так и именем (это снова не очень жизненное предположение, но достаточное для примера). В соответствии с определением 7~ отношение СОТРУДНИКИ-ПРОЕКТЫ находится в 3NF. Однако тот факт, что имеются функциональные зависимости атрибутов отношения от атрибута, являющегося частью первичного ключа, приводит к аномалиям. Например, для того, чтобы изменить имя сотрудника с данным номером согласованным образом, нам потребуется модифицировать все кортежи, включающие его номер. Определение 8. Детерминант Детерминант - любой атрибут, от которого полностью функционально зависит некоторый другой атрибут. Определение 9. Нормальная форма Бойса-Кодда Отношение R находится в нормальной форме Бойса-Кодда (BCNF) в том и только в том случае, если каждый детерминант является возможным ключом. Очевидно, что это требование не выполнено для отношения СОТРУДНИКИ-ПРОЕКТЫ. Можно произвести его декомпозицию к отношениям СОТРУДНИКИ и СОТРУДНИКИ-ПРОЕКТЫ: СОТРУДНИКИ (СОТР_НОМЕР, СОТР_ИМЯ) Возможные ключи: СОТР_НОМЕР СОТР_ИМЯ Функциональные зависимости: СОТР_НОМЕР (r) CОТР_ИМЯ СОТР_ИМЯ (r) СОТР_НОМЕР СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН) Возможный ключ: СОТР_НОМЕР, ПРО_НОМЕР Функциональные зависимости: СОТР_НОМЕР, ПРО_НОМЕР (r) CОТР_ЗАДАН Возможна альтернативная декомпозиция, если выбрать за основу СОТР_ИМЯ. В обоих случаях получаемые отношения СОТРУДНИКИ и СОТРУДНИКИ-ПРОЕКТЫ находятся в BCNF, и им не свойственны отмеченные аномалии
Четвертая нормальная форма Рассмотрим пример следующей схемы отношения: ПРОЕКТЫ (ПРО_НОМЕР,ПРО_СОТР, ПРО_ЗАДАН) Отношение ПРОЕКТЫ содержит номера проектов, для каждого проекта список сотрудников, которые могут выполнять проект, и список заданий, предусматриваемых проектом. Сотрудники могут участвовать в нескольких проектах, и разные проекты могут включать одинаковые задания. Каждый кортеж отношения связывает некоторый проект с сотрудником, участвующим в этом проекте, и заданием, который сотрудник выполняет в рамках данного проекта (мы предполагаем, что любой сотрудник, участвующий в проекте, выполняет все задания, предусмотренные этим проектом). По причине сформулированных выше условий единственным возможным ключем отношения является составной атрибут ПРО_НОМЕР, ПРО_СОТР, ПРО_ЗАДАН, и нет никаких других детерминантов. Следовательно, отношение ПРОЕКТЫ находится в BCNF. Но при этом оно обладает недостатками: если, например, некоторый сотрудник присоединяется к данному проекту, необходимо вставить в отношение ПРОЕКТЫ столько кортежей, сколько заданий в нем предусмотрено. Определение 10. Многозначные зависимости В отношении R (A, B, C) существует многозначная зависимость R.A (r) (r) R.B в том и только в том случае, если множество значений B, соответствующее паре значений A и C, зависит только от A и не зависит от С. В отношении ПРОЕКТЫ существуют следующие две многозначные зависимости: ПРО_НОМЕР (r) (r) ПРО_СОТР ПРО_НОМЕР (r) (r) ПРО_ЗАДАН Легко показать, что в общем случае в отношении R (A, B, C) существует многозначная зависимость R.A (r) (r) R.B в том и только в том случае, когда существует многозначная зависимость R.A (r) (r) R.C. Дальнейшая нормализация отношений, подобных отношению ПРОЕКТЫ, основывается на следующей теореме: Теорема Фейджина Отношение R (A, B, C) можно спроецировать без потерь в отношения R1 (A, B) и R2 (A, C) в том и только в том случае, когда существует MVD A (r) (r) B | C. Под проецированием без потерь понимается такой способ декомпозиции отношения, при котором исходное отношение полностью и без избыточности восстанавливается путем естественного соединения полученных отношений. Определение 11. Четвертая нормальная форма Отношение R находится в четвертой нормальной форме (4NF) в том и только в том случае, если в случае существования многозначной зависимости A (r) (r) B все остальные атрибуты R функционально зависят от A. В нашем примере можно произвести декомпозицию отношения ПРОЕКТЫ в два отношения ПРОЕКТЫ-СОТРУДНИКИ и ПРОЕКТЫ-ЗАДАНИЯ: ПРОЕКТЫ-СОТРУДНИКИ (ПРО_НОМЕР, ПРО_СОТР) ПРОЕКТЫ-ЗАДАНИЯ (ПРО_НОМЕР, ПРО_ЗАДАН) Оба эти отношения находятся в 4NF и свободны от отмеченных аномалий.
Пятая нормальная форма Во всех рассмотренных до этого момента нормализациях производилась декомпозиция одного отношения в два. Иногда это сделать не удается, но возможна декомпозиция в большее число отношений, каждое из которых обладает лучшими свойствами. Рассмотрим, например, отношение СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ (СОТР_НОМЕР, ОТД_НОМЕР, ПРО_НОМЕР) Предположим, что один и тот же сотрудник может работать в нескольких отделах и работать в каждом отделе над несколькими проектами. Первичным ключем этого отношения является полная совокупность его атрибутов, отсутствуют функциональные и многозначные зависимости. Поэтому отношение находится в 4NF. Однако в нем могут существовать аномалии, которые можно устранить путем декомпозиции в три отношения. Определение 12. Зависимость соединения Отношение R (X, Y,..., Z) удовлетворяет зависимости соединения * (X, Y,..., Z) в том и только в том случае, когда R восстанавливается без потерь путем соединения своих проекций на X, Y,..., Z. Определение 13. Пятая нормальная форма Отношение R находится в пятой нормальной форме (нормальной форме проекции-соединения - PJ/NF) в том и только в том случае, когда любая зависимость соединения в R следует из существования некоторого возможного ключа в R. Введем следующие имена составных атрибутов: СО = {СОТР_НОМЕР, ОТД_НОМЕР} СП = {СОТР_НОМЕР, ПРО_НОМЕР} ОП = {ОТД_НОМЕР, ПРО_НОМЕР} Предположим, что в отношении СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ существует зависимость соединения: * (СО, СП, ОП) На примерах легко показать, что при вставках и удалениях кортежей могут возникнуть проблемы. Их можно устранить путем декомпозиции исходного отношения в три новых отношения: СОТРУДНИКИ-ОТДЕЛЫ (СОТР_НОМЕР, ОТД_НОМЕР) СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР) ОТДЕЛЫ-ПРОЕКТЫ (ОТД_НОМЕР, ПРО_НОМЕР) Пятая нормальная форма - это последняя нормальная форма, которую можно получить путем декомпозиции. Ее условия достаточно нетривиальны, и на практике 5NF не используется. Заметим, что зависимость соединения является обобщением как многозначной зависимости, так и функциональной зависимости.
|
||||
Последнее изменение этой страницы: 2016-12-27; просмотров: 195; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.162.73 (0.009 с.) |