Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Рассмотрим критерии Манна-Уитни и Вилкоксона.↑ Стр 1 из 2Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Критерий Манна-Уитни и критерий Вилкоксона – критерии ранговые, т.е. основанные на сравнении сумм рангов, полученных тем или иным образом из сравниваемых выборочных распределений. В данном конкретном случае рангом называется порядковыйномер числа в ранжированном (расставленном в порядке возрастания) массиве данных – чем больше число, тем выше его ранг. При этом, если числа не повторяются, то их ранги в точности соответствуют их порядковым номерам. Если же некое число повторяется несколько раз, то всем им приписывается средний ранг. Продемонстрируем, как все это происходит и выглядит. Допустим, мы получили следующий вариационный ряд данных x: 5.6 11.7 -3.5 6.3 8 7.4 0.5 8 3 3.1 15.2 3.1 8 6.7 111 4.4 Здесь числа представлены в том порядке, как они были получены. Расставим их в порядке возрастания и припишем порядковые номера, а также ранги R:
Из приведенного примера хорошо видно, что при ранжировании происходит «линеаризация данных» - сглаживание их резких колебаний за счет того, что ранг числа не зависит от его абсолютной величины и разницы с соседними вариантами. Например, последнее число 111 чуть ли не на порядок превышает ближайшее к нему 15.2. Тем не менее, ранг его всего на 1 выше, чем у предпоследнего числа. Ранговые критерии для сравнения выборочных совокупностей делятся на две группы – для независимых и зависимых выборок. Критерий Манна-Уитни – ранговый критерий для сравнения независимых выборок. Критерий парных сравнений Вилкоксона– ранговый критерий для сравнения зависимых выборок. Рассмотрим его на примере. У 10 здоровых взрослых людей измеряли кровяное давление после введения кофеина и плацебо. Получены следующие данные для «верхнего», систолического давления СД:
Возникает вопрос, можно ли на основании этих данных полагать, что кофеин оказывает физиологическое действие. Вначале значения одного ряда строго попарно вычитают из значений другого с учетом знака разницы d. Вычтем нижний ряд из верхнего:
Далее разницы ранжируют по известным правилам, но при этом не учитывают знак разницы (т.е. ранжируют по модулю). Нулевую пару отбрасывают.
Отдельно суммируют ранги для положительных и отрицательных разниц. В нашем случае получаем: , . В качестве значения критерия Tz берут меньшую сумму независимо от знака, т.е. Tz =11,5. Сравниваем это значение с «критическим» из специальной таблицы, входом в которую является число сравниваемых пар, но лишь тех, которые не дают нулевые разницы. В нашем случае таковых 9. Тогда Tкр = 6 для и Tкр =2 для . Поскольку даже для первого уровня значимости, различий уровней СД нулевую гипотезу отвергнуть нельзя и различия не являются статистически значимыми (р<0,05). Иными словами, у нас нет пока оснований утверждать, что действие кофеина носит исключительно физиологический характер. Смысл теста состоит в следующем. Если бы мы имели бесконечно большой ряд случайных разниц, то число и величина положительных разниц равнялись бы числу отрицательных и, соответственно, суммы их рангов были бы равны. На конечном и ограниченном числовом массиве опять же чисто случайно может иметь место «перекос» в сторону преимущественно положительных или отрицательных разниц. Это обстоятельство и учитывается в критических значениях критерия. Tкр – это граница между практически возможными и практически невозможными значениями критерия. Соответственно, если , то полученная нами сумма рангов с достаточно высокой вероятностью могла возникнуть чисто случайно и о сдвиге одного числового ряда относительно другого ничего определенного сказать нельзя. Это недостоверное различие. Если же , то наблюдаемое различие положительных и отрицательных разниц не могло быть получено случайным образом. Это означает, что смещение значений в сопоставляемых числовых рядах объясняется действием какой-то систематически действующей, неслучайной причины, т.е. носит статистически достоверный (устойчивый и прогнозируемый) характер. Как было показано выше, пары, имеющие одинаковые числовые значения и, соответственно, дающие нулевые разницы, исключаются из рассмотрения. И если таких случаев много, то «жесткость» критерия нарастает, поскольку Tкр тем меньше, чем меньше сравниваемых пар. Соответственно, увеличивается число ситуаций, когда нулевую гипотезу отвергнуть невозможно, и различие будет считаться незначимым. Более того, если число пар окажется меньше 6, то критерий Вилкоксона вообще перестанет «работать»: 6 - минимальное число пар, для которого еще существует Tкр. Для меньшего числа его просто невозможно рассчитать. А подобные ситуации в медико-биологической практике возникают довольно часто, поскольку многие измерения неизбежно приходится выполнять с достаточно высокой степенью грубости, и вероятность появления совпадающих значений здесь все еще весьма высока.
13. Функциональная и корреляционная зависимость. Прямая, обратная связь. Любые явления в окружающем нас мире могут быть связаны прямой или обратной связью. Эта характеристика называется направленностью связи.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-14; просмотров: 784; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.55.43 (0.01 с.) |