Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

ГЛАВА VI. Техногенное загрязнение среды

Поиск
   
Проработав эту главу, вы должны уметь: 1. Указать виды техногенных загрязнений окружающей среды и масштабы глобального загрязнения. 2. Назвать основные источники техногенных эмиссии и указать относительный вклад промышленных отраслей в загрязнение среды. 3. Объяснить источники и механизмы таких явлений, как образование кислотных осадков, парниковый эффект, изменение климата, нарушение озонового слоя. 4. Указать главные источники загрязнения природных вод и поверхности земли. 5. Рассказать об основных проблемах радиационного загрязнения. 6. Охарактеризовать главные виды физического волнового загрязнения среды.

Техногенные эмиссии и воздействия

В предыдущей главе рассмотрены по существу две большие категории антропогенных воздействий: а) изменение ландшафтов и целостности природных комплексов и б) изъятие природных ресурсов. Эта глава посвящена техногенному загрязнению экосферы и среды обитания человека. Техногенное загрязнение среды является наиболее очевидной и быстродействующей негативной причинной связью в системе экосферы: «экономика, производство, техника, среда». Оно обусловливает значительную часть природоемкости техносферы и приводит к деградации экологических систем, глобальным климатическим и геохимическим изменениям, к поражениям людей. На предотвращение загрязнения природы и окружающей человека среды направлены основные усилия прикладной экологии.

Рис. 6.1. Классификация техногенных загрязнений окружающей среды

Классификация техногенных воздействий, обусловленных загрязнением среды, включает такие основные категории:

1. Материально-энергетические характеристики воздействий: механические, физические (тепловые, электромагнитные, радиационные, акустические), химические, биологические факторы и агенты и их различные сочетания(рис. 6.1). В большинстве случаев в качестве таких агентов выступают эмиссии (т.е. испускания - выбросы, стоки, излучения и т.п.) различных технических источников.

2. Количественные характеристики воздействия: сила и степень опасности (интенсивность факторов и эффектов, массы, концентрации, характеристики типа «доза - эффект», токсичность, допустимость по экологическим и санитарно-гигиеническим нормам); пространственные масштабы, распространенность (локальные, региональные, глобальные).

3. Временные параметры и различия воздействий по характеру эффектов: кратковременные и длительные, стойкие и нестойкие, прямые и опосредованные, обладающие выраженными или скрытыми следовыми эффектами, обратимые и необратимые, актуальные и потенциальные; пороговость эффектов.

4. Категории объектов воздействия: различные живые реципиенты (т.е. способные воспринимать и реагировать) - люди, животные, растения; компоненты окружающей среды (среда поселений и помещений, природные ландшафты, поверхность земли, почва, водные объекты, атмосфера, околоземное пространство); изделия и сооружения.

В пределах каждой из этих категорий возможно определенное ранжирование экологической значимости факторов, характеристик и объектов. В целом по природе и масштабам актуальных воздействий наиболее существенны химические загрязнения, а самая большая потенциальная угроза связана с радиацией. Что касается объектов воздействия, то на первом месте, конечно же, стоит человек. В последнее время особую опасность представляет не только рост загрязнений, но и их суммарное влияние, часто превышающее по конечному эффекту простое суммирование последствий.

С экологической точки зрения, все продукты техносферы, не вовлекаемые в биотический круговорот, являются загрязнителями. Даже те, которые химически инертны, поскольку они занимают место и становятся балластом экотопов. Продукты производства также со временем становятся загрязнителями, представляя собой «отложенные отходы». В более узком значении, материальными загрязнителями - поллютантами (от лат. pollutio - марание) - считают отходы и продукты, которые могут оказывать более или менее специфическое негативное влияние на качество среды или непосредственно воздействовать на реципиентов. В зависимости от того, какая из сред - воздух, вода или земля - загрязняется теми или иными веществами, различают соответственно аэрополлютанты, гидрополлютанты и терраполлютанты.

Загрязнение окружающей среды относится к непреднамеренным, хотя и очевидным, легко осознаваемым экологическим нарушениям. Они выступают на первый план не только потому, что многие из них значительны, но и потому, что они трудно контролируются и чреваты непредвиденными эффектами. Некоторые из них, например, техногенная эмиссия СО2 или тепловое загрязнение, принципиально неизбежны, пока существует топливная энергетика.

Количественная оценка глобального загрязнения. Масштабы отходов глобального антропогенного материального баланса охарактеризованы в предыдущей главе. Напомним, что общая масса отходов современного человечества и продуктов техносферы составляет почти 160 Гт/год, из которых около 10 Гт образуют массу изделий, т.е. «отложенный отход».

Таким образом, в среднем на одного жителя планеты приходится около 26 т всех антропогенных эмиссии в год. 150 Гт отходов распределяются приблизительно следующим образом: 45 Гт (30%) выбрасываются в атмосферу, 15 Гт (10%) - сливаются со стоками в водоемы, 90 Гт (60%) попадают на поверхность земли.

Указанные объемы эмиссии настолько велики, что даже малые концентрации в них токсичных примесей могут составить в совокупности огромное количество. По различным экспертным оценкам, общая масса техногенных загрязнителей, относимых к разным классам опасности, составляет от 1J5 до 1/8 Гт в год. т.е. примерно 250-300 кг на каждого жителя Земли. Это и есть минимальная оценка глобального химического загрязнения.

Химизация техносферы достигла к настоящему времени таких масштабов, которые заметно влияют на геохимический облик всей экосферы. Общая масса производимых продуктов и химически активных отходов всей химической промышленности мира (вместе с сопутствующими производствами) превысила 1,5 Гт/год. Почти все это количество может быть отнесено к загрязнителям. Но дело не только в общей массе, но и в числе, разнообразии и токсичности множества производимых веществ. В мировой химической номенклатуре значится более 107 химических соединений; ежегодно их число возрастает на несколько тысяч. В заметных количествах производится и предлагается на рынке более 100 тысяч веществ, в массовых масштабах производится около 5 тысяч веществ. Однако подавляющее большинство производимых и используемых веществ не оценены с точки зрения их токсичности и экологической опасности.

Источники техногенных эмиссии подразделяются на организованные и неорганизованные, стационарные и подвижные. Организованные источники оборудованы специальными устройствами для направленного вывода эмиссии (трубы, вентиляционные шахты, сбросные каналы и желоба и т.п.);

эмиссии от неорганизованных источников произвольны. Источники различаются также по геометрическим характеристикам (точечные, линейные, площадные) и по режиму работы - непрерывному, периодическому, залповому.

Процессы и технологии. Источниками преобладающей части химического и теплового загрязнения являются термохимические процессы в энергетике - сжигание топлива и связанные с ним термические и химические процессы и утечки. Главные реакции, определяющие при этом эмиссию углекислого газа, паров воды и теплоты (Q):

Уголь: С + О2 ¾® СО2 и

Углеводороды: СnНm +(n + 0,25m) О2 ¾® nСО2 + (0,5m)Н2О,

где Q = 102,2 (n + 0,25m) + 44,4 (0,5 m) кДж/моль.

Попутные реакции, определяющие эмиссию других загрязнителей, связаны с содержанием в топливе различных примесей, с термоокислением азота воздуха и со вторичными реакциями, происходящими уже в окружающей среде. Все эти реакции сопровождают работу тепловых станций, промышленных печей, двигателей внутреннего сгорания, газотурбинных и реактивных двигателей, процессы металлургии, обжига минерального сырья. Наибольший вклад в энергетически зависимое загрязнение среды вносят теплоэнергетика и транспорт.

 

Рис. 6.2. Влияние теплоэлектростанции на окружающую среду

1 - котел; 2 - труба; 3 - паровая труба; 4 - электрогенератор;

5 - электроподстанция; 6 - конденсатор; 7 - водозабор для охлаждения конденсатора; 8 - водное питание котла; 9 - линия электопередачи;

10 - потребители электроэнергии; 11 - водоем

 

Общая картина воздействия теплоэлектростанции (ТЭС) на окружающую среду показана на рис. 6.2. При сжигании топлива вся его масса превращается в твердые, жидкие и газообразные отходы. Данные о выбросах главных загрязнителей воздуха при работе ТЭС приведены в табл. 6.1.

Таблица 6.1

Удельные выбросы в атмосферу при работе ТЭС мощностью 1000 МВт на разных видах топлива, г/кВт * час

Выбросы Топливо
Уголь Мазут Природный газ
Частицы 0,4 - 1,4 0,2 - 0,7 0 - 0,05
СО 0,3 - 1,0 0,1 - 0,5 -
NOx 3,0 - 7,5 2,4 - 3,0 1,9-2,4
SO2 6,0 - 12,5 4,2 - 7,5 0 - 0,02

 

Размах величин зависит от качества топлива и типа топочных агрегатов. Электростанция мощностью 1000 МВт, работающая на угле, при условии нейтрализации 80% диоксида серы ежегодно выбрасывает в атмосферу 36 млрд м3 отходящих газов, 5000 т SO2, 10000 т NOx 3000 т пыледымовых частиц, 100 млн м3 пара, 360 тыс. т золы и 5 млн м3 сточных вод с содержанием примесей от 0,2 до 2 г/л. В среднем в топливной теплоэлектроэнергетике на 1 т условного топлива выбрасывается около 150 кг загрязнителей. Всего стационарными теплоэнергетическими источниками мира выбрасывается за год около 700 млн т загрязнителей различных классов опасности, в том числе около 400 млн т аэрополлютантов.

Число двигателей внутреннего сгорания (ДВС) в мире превысило 1 миллиард. Около 670 млн из них - двигатели автомобилей. Остальное количество относится к другим видам транспорта, сельхозмашинам, военной технике, малой моторной технике и стационарным ДВС. Более 80% автопарка приходится на легковые автомобили. Из 3,3 млрд т нефти, добываемой сейчас в мире, почти 1,5 млрд т (45%) используются всеми видами транспорта, в том числе 1,2 млрд т - легковыми автомобилями.

Рассмотрим обмен веществ «среднего» легкового автомобиля с карбюраторным двигателем при расходе горючего в смешанном режиме движения 8 л (6 кг) на 100 км. При оптимальной работе двигателя сжигание 1 кг бензина сопровождается потреблением 13,5 кг воздуха и выбросом 14,5 кг отработанных веществ. Их состав отражен в табл. 6.2. Соответствующий выброс дизельного двигателя несколько меньше. Вообще в выхлопе современного автомобиля регистрируется до 200 индивидуальных веществ. Общая масса загрязнителей - в среднем около 270 г на 1 кг сжигаемого бензина – дает в пересчете на весь объем горючего, потребляемого легковыми автомобилями мира, около 340 млн т. Аналогичный расчет для всего автомобильного транспорта (плюс грузовые автомобили, автобусы) увеличит эту цифру по меньшей мере до 400 млн т. Следует также иметь в виду, что в реальной практике эксплуатации автотранспорта весьма значительны разливы и утечки горючего и масел, образование металлической, резиновой и асфальтовой пыли, вредных аэрозолей.

 

Таблица 6.2

Состав отработавших газов автомобиля, % по объему

Компоненты Двигатели
Карбюраторные Дизельные
N2 72- 75 74-76
O2 0,3 - 0,8 1,5-3,6
Н2О 3-8 0,8-4
СО2 10- 14,5 6-10
СО 0,5 - 1,3 0,1 - 0,5
NOx 0,1 - 0,8 0,01 - 0,5
СxНy 0,2 - 0,3 0,02 - 0,5
Альдегиды 0-0,2 0 - 0,01
Частицы, г/м3 0,1 - 0,4 0,1 - 1,5
Бензопирен, мкг/м3 10-20 до 10

 

Металлургические процессы основаны на восстановлении металлов из руд, где они содержатся преимущественно в виде окислов или сульфидов, с помощью термических и электролитических реакций. Наиболее характерные суммарные (упрощенные) реакции:

(железо) Fe2O3 + 3С + O2. ¾®2Fe + СО + 2СО2;

(медь) Cu2S + О2 ¾® 2Cu + SO2;

(алюминий, электролиз) Аl2O3 + 2O ¾® 2А1 + СО + СО2.

Технологическая цепь в черной металлургии включает производство окатышей и агломератов, коксохимическое, доменное, сталеплавильное, прокатное, ферросплавное, литейное производства и другие вспомогательные технологии. Все металлургические переделы сопровождаются интенсивным загрязнением среды (табл. 6.3). В коксохимическом производстве дополнительно выделяются ароматические углеводороды, фенолы, аммиак, цианиды и целый ряд других веществ. Черная металлургия потребляет большое количество воды. Хотя промышленные нужды на 80 - 90% удовлетворяются за счет систем оборотного водоснабжения, забор свежей воды и сброс загрязненных стоков достигают очень больших объемов, соответственно порядка 25 - 30 м3 и 10 - 15 м3 на 1 т продукции полного цикла. Со стоками в водные объекты поступают значительные количества взвешенных веществ, сульфатов, хлоридов, соединений тяжелых металлов.

Таблица 6.3

Газовые выбросы (до очистки) основных переделов черной металлургии (без коксохимического производства), в кг/т соответствующего продукта

Выбросы. Производство
Агломерационное Доменное Сталеплавильное Прокатное
Пыль 20-25 100- 110 13-32 0,1 - 0,2
СО 20-50 500-600 0,4 - 0,6 0.7*
SO2 3-25 0,2 - 0,3 4-35 0,4*
NOx     0,3-3 0,5*
H2S   10-60    

* кг/м поверхности металла

Цветная металлургия, несмотря на относительно меньшие материальные потоки производства, не уступает черной металлургии по совокупной токсичности эмиссии. Кроме большого количества твердых и жидких отходов, содержащих такие опасные загрязнители, как свинец, ртуть, ванадий, медь, хром, кадмий, таллий и др., выбрасывается и много аэрополлютантов. При металлургической переработке сульфидных руд и концентратов образуется большая масса диоксида серы. Так, около 95% всех вредных газовых выбросов Норильского горно-металлургического комбината приходится на SO2, а степень его утилизации на превышает 8%.

Технологии химической промышленности со всеми ее отраслями (базовая неорганическая химия, нефтегазохимия, лесохимия, оргсинтез, фармакологическая химия, микробиологическая промышленность и др.) содержат множество существенно незамкнутых материальных циклов. Основными источниками вредных эмиссии являются процессы производства неорганических кислот и щелочей, синтетического каучука, минеральных удобрений, ядохимикатов, пластмасс, красителей, растворителей, моющих средств, крекинг нефти. Список твердых, жидких и газообразных отходов химической промышленности огромен и по массе загрязнителей, и по их токсичности. В химическом комплексе РФ ежегодно образуется более 10 млн т вредных промышленных отходов.

Различные технологии в обрабатывающих отраслях промышленности, в первую очередь в машиностроении, включают большое число разнообразных термических, химических и механических процессов (литейное, кузнечно-прессовое, механообрабатывающее производства, сварка и резка металлов, сборка, гальваническая, лакокрасочная обработка и др.). Они дают большой объем вредных эмиссии, загрязняющих среду. Заметный вклад в общее загрязнение среды вносят также различные процессы, сопровождающие добычу и обогащение минерального сырья и строительство. Вклад различных отраслей промышленного производства в загрязнение среды отражен на рис. 6.3.

Сельское хозяйство и быт людей по собственным отходам - остаткам и продуктам жизнедеятельности растений, животных и человека - по существу не являются источниками загрязнения среды, так как эти продукты могут включаться в биотический круговорот. Но, во-первых, для современных агротехнологий и коммунального хозяйства характерен концентрированный сброс большей части отходов, что приводит к значительным локальным превышениям допустимых концентраций органики и таким явлениям, как эвтрофикация и заражение водоемов. Во-вторых, что еще серьезнее, сельское хозяйство и быт людей являются посредниками и участниками рассредоточения и распространения значительной части промышленных загрязнений в виде распределенных потоков эмиссии, остатков нефтепродуктов, удобрений, ядохимикатов и различных употребленных изделий, мусора - от туалетной бумаги до заброшенных ферм и городов.

Между всеми средами существует постоянный обмен частью загрязнителей: тяжелая часть аэрозолей, газодымовых и пылевых примесей из атмосферы выпадает на земную поверхность и в водоемы, часть твердых отходов с поверхности земли смывается в водоемы или рассеивается воздушными потоками. Загрязнение среды влияет на человека прямо или через биологическое звено (рис. 6.4). В техногенных потоках поллютантов ключевое место занимают транспортирующие среды - воздух и вода.

 

 

Рис. 6.3. Относительный вклад отраслей промышленности РФ в загрязнение среды, % (1996 г.)

А - выбросы загрязняющих веществ в атмосферу;

Б - сбросы загрязненных сточных вод

Рис. 6.4. Схема влияний загрязнения среды

Загрязнение атмосферы

Состав, количество и опасность аэрополлютантов. Из 52 Гт глобальных антропогенных выбросов в атмосферу более 90% приходится на углекислый газ и пары воды, которые обычно не относят к загрязнителям (об особой роли выбросов СО2 говорится ниже). Техногенные выбросы в воздушную среду насчитывают десятки тысяч индивидуальных веществ. Однако наиболее распространенные, «многотоннажные» загрязнители сравнительно немногочисленны. Это различные твердые частицы (пыль, дым, сажа), окись углерода (СО), диоксид серы (SO2), окислы азота (NO и NO2), различные летучие углеводороды (СНx), соединения фосфора, сероводород (H2S), аммиак (NН3), хлор (С1), фтористый водород (HF). Количества первых пяти групп веществ из этого перечня, измеряемые десятками миллионов тонн и выбрасываемые в воздушную среду всего мира и России, представлены в табл. 6.4. Вместе с другими веществами, не указанными в таблице, общая масса выбросов от всех организованных источников, эмиссии которых можно измерить, составляет около 800 млн т. В эти количества не входят загрязнения воздуха при ветровой эрозии, лесных пожарах и вулканических извержениях. Сюда не входит также та часть вредных веществ, которая улавливается с помощью различных средств очистки отходящих газов.

Наибольшая загрязненность атмосферы приурочена к индустриальным регионам. Около 90% выбросов приходятся на 10% территории суши и сосредоточены в основном в Северной Америке, Европе и Восточной Азии. Особенно сильно загрязняется воздушный бассейн крупных промышленных городов, где техногенные потоки тепла и аэрополлютантов, особенно при неблагоприятных метеоусловиях (высоком атмосферном давлении и термоинверсиях), часто создают пылевые купола и явления слога - токсичных смесей тумана, дыма, углеводородов и вредных окислов. Такие ситуации сопровождаются сильными превышениями ПДК многих аэрополлютантов.

 

Таблица 6.4

Выбросы в атмосферу пяти главных загрязнителей в мире и в России (млн т)

  Весь мup Россия
Стационарные источники Транспорт Стационарные источники Транспорт
Твердые частицы     6,4 3,7
Окись углерода     7,6 10,1
Диоксид серы   0,7 9,2  
Оксиды азота     3,0 1,1
Углеводороды     0,2 2,0

 

По данным государственного учета, суммарные выбросы загрязняющих веществ на территории РФ за 1991-1996 гг. уменьшились на 36,3 %, что является следствием падения производства. Но темп снижения выбросов меньше темпа спада производства, а в расчете на единицу ВНП выбросы в атмосферу сохраняются на одном уровне.

Более 200 городов России, население которых составляет 65 млн человек, испытывают постоянные превышения ПДК токсичных веществ. Жители 70 городов систематически сталкиваются с превышениями ПДК в 10 и более раз. Среди них такие города, как Москва, Санкт-Петербург, Самара, Екатеринбург, Челябинск, Новосибирск, Омск, Кемерово, Хабаровск. В перечисленных городах основной вклад в общий объем выбросов вредных веществ приходится на долю автотранспорта, например, в Москве он составляет - 88%, в Санкт-Петербурге - 71 %. По валовым выбросам загрязняющих веществ в атмосферу лидирует Уральский экономический район. Наряду с этим Россия в целом не является основным поставщиком вредных выбросов в атмосферу, поскольку поток аэрополлютантов в расчете на одного жителя и на единицу площади страны значительно ниже, чем в США и странах Западной Европы. Зато они заметно выше в расчете на единицу ВНП. Это свидетельствует о высокой ресурсоемкости производства, устаревших технологиях и недостаточном применении средств очистки выбросов. Из 25 тысяч российских предприятий, загрязняющих атмосферу, лишь 38% оборудованы пылегазоочистными установками, из которых 20% не работают или работают неэффективно. Это одна из причин повышенных эмиссии некоторых малых по массе, но токсичных загрязнителей - углеводородов и тяжелых металлов.

Россия занимает невыгодное географическое положение по отношению к трансграничному переносу аэрополлютантов. В связи с преобладанием западных ветров значительную долю загрязнения воздушного бассейна Европейской территории России (ЕТР) дает аэрогенный перенос из стран Западной и Центральной Европы и ближнего зарубежья. Около 50% заграничных соединений серы и окислов азота на ЕТР поставляют Украина, Польша, ФРГ и другие страны Европы.

Для интегральной оценки состояния воздушного бассейна применяют индекс суммарного загрязнения атмосферы:

(6.1)

где qi - средняя за год концентрация в воздухе i-ro вещества;

Ai - коэффициент опасности i-ro вещества, обратный ПДК этого вещества: Ai = 1/ПДКi;

Сi - коэффициент, зависящий от класса опасности вещества: Сi равно 1,5; 1,3; 1,0 и 0,85 соответственно для 1, 2, 3 и 4-го классов опасности (краткие сведения о ПДК и классах опасности основных загрязнителей воздуха даны в приложении ПЗ).

Im является упрощенным показателем и рассчитывается обычно для т = 5 - наиболее значимых концентраций веществ, определяющих суммарное загрязнение воздуха. В эту пятерку чаще других попадают такие вещества, как бензопирен, формальдегид, фенол, аммиак, диоксид азота, сероуглерод, пыль. Индекс Im изменяется от долей единицы до 15-20 - чрезвычайно опасных уровней загрязнения. В 1996 г. в список городов с наибольшим уровнем загрязнений атмосферы (Im > 14) вошли 44 города России.

Земная атмосфера обладает способностью самоочищения от загрязняющих веществ, благодаря происходящим в ней физико-химическим и биологическим процессам. Однако мощность техногенных источников загрязнения возросла настолько, что в нижнем слое тропосферы наряду с локальным повышением концентрации некоторых газов и аэрозолей, происходят глобальные изменения. Человек вторгается в сбалансированный биотой круговорот веществ, резко увеличив выброс вредных веществ в атмосферу, но не обеспечив их вывод. Концентрация ряда антропогенных веществ в атмосфере (углекислый газ, метан, оксиды азота и др.) быстро растет. Это свидетельствует о том, что ассимиляционный потенциал биоты близок к исчерпанию.

Техногенные окислы серы и азота в атмосфере. Кислотные осадки. По ряду показателей, в первую очередь по массе и распространенности вредных эффектов, атмосферным загрязнителем номер один считают диоксид серы. Он образуется при окислении серы, содержащейся в топливе или в составе сульфидных руд. В связи с увеличением мощности высокотемпературных процессов, переводом многих ТЭС на газ и ростом парка автомобилей растут выбросы окислов азота, образующихся при окислении атмосферного азота. Поступление в атмосферу больших количеств SO2 и окислов азота приводит к заметному снижению рН атмосферных осадков. Это происходит из-за вторичных реакций в атмосфере, приводящих к образованию сильных кислот - серной и азотной. В этих реакциях участвуют кислород и пары воды, а также частицы техногенной пыли в качестве катализаторов:

2SO2 + О2 + 2Н2О ¾® 2H2SO4;

4NO2 + 2Н2O + О2 ¾®4HNO3.

В атмосфере оказывается и ряд промежуточных продуктов указанных реакций. Растворение кислот в атмосферной влаге приводит к выпадению «кислотных дождей». Показатель рН осадков в ряде случаев снижается на 2 - 2,5 единицы, т.е. вместо нормальных 5,6 - 5,7 до 3,2 - 3,7. Следует напомнить, что рН - это отрицательный логарифм концентрации водородных ионов, и, следовательно, вода с рН = 3,7 в сто раз «кислее» воды с рН = 5,7. В промышленных районах и в зонах атмосферного заноса окислов серы и азота рН дождевой воды колеблется от 3 до 5. Кислотные осадки особенно опасны в районах с кислыми почвами и низкой буферностью природных вод. В Америке и Евразии это обширные территории севернее 55° с.ш. Техногенная кислота, помимо прямого негативного действия на растения, животных и микрофлору увеличивает подвижность и вымывание почвенных катионов, вытесняет из карбонатов и органики почвы углекислый газ, закисляет воду рек и озер. Это приводит к неблагоприятным изменениям в водных экосистемах. Природные комплексы Южной Канады и Северной Европы уже давно ощущают действие кислых осадков.

На больших пространствах наблюдается деградация хвойных лесов, беднеет фауна водоемов. В 70-х годах в реках и озерах Шотландии и Скандинавии начали гибнуть лосось и форель. Сходные явления происходят и в России, особенно на Северо-Западе, на Урале и в районе Норильска, где громадные площади тайги и лесотундры стали почти безжизненными из-за сернистых выбросов Норильского комбината.

Нарушение озонового слоя. В 70-х годах появились сообщения о региональных снижениях содержания озона в стратосфере. Особенно заметной стала сезонно пульсирующая озоновая дыра над Антарктидой площадью более 10 млн км2, где содержание О2 за 80-е годы уменьшилось почти на 50%. Позднее «блуждающие озоновые дыры», правда, меньшие по размеру и не с таким значительным снижением, стали наблюдаться в зимнее время и в Северном полушарии, в зонах стойких антициклонов - над Гренландией, Северной Канадой и Якутией. Средняя скорость глобального уменьшения за период с 1980 по 1995 г. оценена в 0,5-0,7% в год.

Поскольку ослабление озонового экрана чрезвычайно опасно для всей наземной биоты и для здоровья людей, эти данные привлекли пристальное внимание ученых, а затем и всего общества. Был высказан ряд гипотез о причинах нарушения озонового слоя. Большинство специалистов склоняется к мнению о техногенном происхождении озоновых дыр. Наиболее обосновано представление, согласно которому главной причиной является попадание в верхние слои атмосферы техногенного хлора и фтора, а также других атомов и радикалов, способных чрезвычайно активно присоединять атомарный кислород, тем самым конкурируя с реакцией

О + О2 ¾® О3.

 

Рис. 6.5. Мировое производство хлорфторуглеродов

 

 

Занос активных галогенов в верхние слои атмосферы опосредован летучими хлорфторуглеродами (ХФУ) типа фреонов (смешанные фторохлориды метана и этана, например, фреон-12 - дихлордифторметан, CF2CI2), которые, будучи в обычных условиях инертными и нетоксичными, под действием коротковолновых ультрафиолетовых лучей в стратосфере распадаются. Вырвавшись «на свободу», каждый атом хлора способен разрушить или помешать образованию множества молекул озона. Хлорфторуглероды обладают рядом полезных свойств, обусловивших широкое их применение в холодильных установках, кондиционерах, аэрозольных баллончиках, огнетушителях и т.д. С 1950 г. объем мирового производства

 

Рис. 6.6. Данные по глобальному потеплению:

А - отклонения от среднего значения температуры приземного воздуха в XX веке и прогноз,

Б - глобальная тенденция средней температуры во второй половине столетия

 

ХФУ ежегодно возрастал на 7 - 10 % (рис. 6.5) и в 80-х годах составил около 1 млн т. В последующем были приняты международные соглашения, обязывающие стран-участниц сократить использование ХФУ. США еще в 1978 г. ввели запрет на использование ХФУ-аэрозолей. Но расширение других областей применения ХФУ снова привело к росту их мирового производства. Переход промышленности к новым озоносберегающим технологиям связан с большими финансовыми затратами. В последние десятилетия появились и другие, чисто технические пути заноса активных разрушителей озона в стратосферу: ядерные взрывы в атмосфере, выбросы сверхзвуковых самолетов, запуски ракет и космических кораблей многоразового использования. Не исключено, однако, что часть наблюдаемого ослабления озонового экрана Земли связана не с техногенными выбросами, а с вековыми колебаниями аэрохимических свойств атмосферы и независимыми изменениями климата.

Парниковый эффект и изменения климата. Техногенное загрязнение атмосферы в определенной степени связано с изменениями климата. Речь идет не только о вполне очевидной зависимости мезоклимата промышленных центров и их окрестностей от теплового, пылевого и химического загрязнения воздуха, но и о глобальном климате.

С конца XIX в. по настоящее время наблюдается тенденция повышения средней температуры атмосферы (рис. 6.6); за последние 50 лет она повысилась приблизительно на 0,7°С. Это отнюдь не мало, если учесть, что при этом валовое увеличение внутренней энергии атмосферы очень велико - порядка 3000 ЭДж. Оно не связано с увеличением солнечной постоянной и зависит только от свойств самой атмосферы. Главным фактором является уменьшение спектральной прозрачности атмосферы для длинноволнового обратного излучения от поверхности земли, т.е. усиление парникового эффекта. Парниковый эффект создается увеличением концентрации ряда газов – СО2, СО, СН4, NOx, ХФУ и др., названных парниковыми газами. По данным, обобщенным в последнее время Международной группой экспертов по проблеме изменения климата (МГЭИК), существует довольно высокая положительная корреляция между концентрацией парниковых газов и отклонениями глобальной температуры атмосферы. В настоящее время значительная часть эмиссии парниковых газов имеет техногенное происхождение. Динамика их средних концентраций за последние 200 лет отражена на рис. 6.7.

Тенденции глобального потепления придается очень большое значение. Вопрос о том, произойдет оно или нет, уже не стоит. По оценкам экспертов Всемирной метеорологической службы, при существующем уровне выбросов парниковых газов средняя глобальная температура в следующем столетии будет повышаться со скоростью 0,25°С за 10 лет. Ее рост к концу XXI в., по разным сценариям, (в зависимости от принятия тех или иных мер) может составить от 1,5 до 4°С. В северных и средних широтах потепление скажется сильнее, чем на экваторе. Казалось бы, такое повышение температуры не должно вызывать особого беспокойства. Более того, возможное потепление в странах с холодным климатом, как, например, Россия, представляется чуть ли не желанным. На самом деле последствия изменения климата могут иметь катастрофический характер. Глобальное потепление вызовет существенное перераспределение осадков на планете. Уровень Мирового океана за счет таяния льдов может повыситься к 2050 г. на 30 - 40 см, а к концу столетия - от 60 до 100 см. Это создаст угрозу затопления значительных прибрежных территорий.

 

Рис. 6.7. Изменения концентрации парниковых газов с начала промышленной революции по настоящее время

CFC-11 - фреоны, хлорфторуглероды

 

Для территории России общая тенденция изменения климата характеризуется слабым потеплением, среднегодовая температура воздуха с 1891 по 1994 гг. повысилась на 0,56°С. За период инструментальных наблюдений самыми теплыми были последние 15 лет, а максимально теплым оказался 1999 г. В последние три десятилетия заметна также тенденция к уменьшению осадков. Одним из тревожных для России последствий изменения климата может стать деструкция мерзлых грунтов. Повышение температуры в зоне вечной мерзлоты на 2-3° приведет к изменению несущих свойств грунтов, что поставит под угрозу различные сооружения и коммуникации. Кроме того, содержащиеся в вечной мерзлоте запасы СО2 и метана из оттаявших грунтов начнут поступать в атмосферу, усугубляя парниковый эффект.

Наряду с подобными прогнозами существуют и определенные сомнения во всецело техногенной обусловленности климатических изменений. Они основаны, в частности, на том, что изменение глобальной температуры в промышленную эпоху все же не выходит за пределы диапазона естественных вековых колебаний температуры в прошлом, тогда как эмиссия парниковых газов намного превзошла естественные изменения.

Загрязнение природных вод

Загрязнение водоемов зависит от различных факторов миграции веществ в аквальных системах, среди которых важнейшими являются степень проточности водоема (река, озеро, водохранилище), масса и состав гидрополлютантов, температура и состав воды, насыщенность ее органикой, тип бассейна, количество и состав растений и животных водоема. Этими факторами определяется соотношение между осаждением, разбавлением, выносом и гидро- и биохимической трансформацией загрязнителей, т.е. путями самоочищения водоема.

Состав, количество и опасность гидрополлютантов. Основной причиной современной деградации природных вод Земли является антропогенное загрязнение. Главными его источниками служат:

§ сточные воды промышленных предприятий;

§ сточные воды коммунального хозяйства городов и других населенных пунктов;

§ стоки систем орошения, поверхностные стоки с полей и других сельскохозяйственных объектов;

§ атмосферные выпадения загрязнителей на поверхность водоемов и водосборных бассейнов. Кроме этого неорганизованный сток осадков (ливневые стоки, талые воды) загрязняет водоемы техногенными терраполлютантами.

Антропогенное загрязнение гидросферы в настоящее время приобрело глобальный характер и существенно уменьшило доступные эксплуатационные ресурсы пресной воды на планете. Общий объем промышленных, сельскохозяйственных и коммунально-бытовых стоков достигает 1300 км3 (по некоторым оценкам до 1800 км3), для разбавления которых требуется примерно 8,5 тыс. км3 воды, т.е. 20% полного и 60% устойчи



Поделиться:


Последнее изменение этой страницы: 2016-12-16; просмотров: 1477; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.45.88 (0.015 с.)