Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
где X и Y — исходное и конечное ядра, а и b — бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы.↑ ⇐ ПредыдущаяСтр 5 из 5 Содержание книги
Поиск на нашем сайте
В ядерной физике эффективность взаимодействия характеризуют эффективным сечением ст. С каждым видом взаимодействия частицы с ядром связывают свое эффективное сечение: эффективное сечение рассеяния определяет процессы рассеяния, эффективное сечение поглощения — процессы поглощения. Эффективное сечение ядерной реакции
где N — число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объема n ядер, d N — число этих частиц, вступающих в ядерную реакцию в слое толщиной dx.Эффективное сечение о имеет размерность площади и характеризует вероятность того, что при падении пучка частиц на вещество произойдет реакция. Единица эффективного сечения ядерных процессов — барн (1 барн =10-28м2). В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (массовых чисел) конечных продуктов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса. В отличие от радиоактивного распада, который протекает всегда с выделением энергии, ядерные реакции могут быть как экзотермическими (с выделением энергии), так и эндотермическими (с поглощением энергии). Реакция деления ядра, заключается в том, что тяжелое ядро под действием нейтронов, и других частиц делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе. Например, при делении ядра урана 23592U 13954Xeb-®13955 Csb-® Осколки деления могут быть разнообразными, поэтому реакция не единственная, приводящая к делению 23592U. Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деления, что делает возможным осуществление цепной реакции деления — ядерной реакции, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Цепная реакция деления характеризуется коэффициентом размножения k нейтронов, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении. Необходимым условием для развития цепной реакции деления является требование k³ 1 . Реакции синтеза легких атомных ядер в более тяжелые, происходящие при сверхвысоких температурах (примерно 107 К и выше), называются термоядерными реакциями. Термоядерные реакции являются, по-видимому, одним из источников энергии Солнца и звезд. В принципе высказаны два предположения о возможных способах протекания термоядерных реакций на Солнце: 1) протонно-протонный, или водородный, цикл, характерный для температур (примерно 107 К): 2) углеродно-азотный, или углеродный, цикл, характерный для более высоких температур (примерно 2•107 К):
Термоядерные реакции дают наибольший выход энергии на единицу массы «горючего», чем любые другие превращения, в том числе и деление тяжелых ядер. Например, количество дейтерия в стакане простой воды энергетически эквивалентно примерно 60 л бензина. Поэтому заманчива перспектива осуществления термоядерных реакций искусственным путем. Впервые искусственная термоядерная реакция осуществлена в СССР (1953), а затем (через полгода) в США в виде взрыва водородной (термоядерной) бомбы, являющегося неуправляемой реакцией. Взрывчатым веществом, в котором происходила реакция, является смесь дейтерия и трития, а запалом — «обычная» атомная бомба, при взрыве которой возникает необходимая для протекания термоядерной реакции температура. Особый интерес представляет осуществление управляемой термоядерной реакции, для обеспечения которой необходимо создание и поддерживание в ограниченном объеме температуры порядка 108 К. Так как при данной температуре термоядерное рабочее вещество представляет собой полностью ионизованную плазму возникает проблема ее эффективной термоизоляции от стенок рабочего объема. На данном этапе развития считается, что основной путь в этом направлении — это удержание плазмы в ограниченном объеме сильными магнитными полями специальной формы. Начало широкого международного сотрудничества в области физики высокотемпературной плазмы и управляемого термоядерного синтеза положено в знаменитом докладе И. В. Курчатова в Харуэле в 1956 г. Хотя проблема управляемого термоядерного синтеза не решена до сих пор, но за последнее десятилетие в этом направлении достигнут значительный прогресс. Под руководством Л. А. Арцимовича коллектив ученых Института атомной энергии (ИАЭ) им. И. В. Курчатова осуществил широкий круг исследований, результатом которых явился пуск летом 1975 г. в ИЭА крупнейшей в мире термоядерной установки «Токамак-10» (Т-10). В Т-10, как и во всех установках этого типа, плазма создается в тороидальной камере, находящейся в магнитном поле, а само плазменное образование — плазменный шнур — также имеет форму тора. В Т-10 плазма с температурой примерно (7—8)•106 К и плотностью примерно 1014 частиц/см3 создается в объеме, приблизительно равном 5 м3, на время около 1 с. Однако следует отметить, что до осуществления критерия Лоусона — условия, необходимого для начала самоподдерживающейся термоядерной реакции,— еще остается значительный «путь»: примерно 20 раз по nt(произведение плотности частиц на время удержания плазмы) и примерно 10 раз по температуре. Результаты, полученные на Т-10, вместе с результатами, ожидаемыми на создаваемых установках (например, Т-20), по мере решения разного рода инженерно-технологических проблем служат базой для создания термоядерного реактора «Токамака». Управляемый термоядерный синтез открывает человечеству доступ к неисчерпаемой «кладовой» ядерной энергии, заключенной в легких элементах. Наиболее заманчивой в этом смысле является возможность извлечения энергии из дейтерия, содержащегося в обычной воде. В самом деле, количество дейтерия в океанской воде составляет примерно 4•1013 т, чему соответствует энергетический запас 1017 МВт•год. Другими словами, эти ресурсы неограниченны. Остается только надеяться, что решение этих проблем — дело недалекого будущего.
Классификация элементарных
В табл. элементарные частицы объединены в три группы: К группе фотонов относится единственная частица — фотон, который переносит электромагнитное взаимодействие. В электромагнитном взаимодействии участвуют в той или иной степени все частицы, как заряженные, так и нейтральные (кроме нейтрино). К группе лептонов относятся
Элементарным частицам, относящимся к группе лептонов, приписывают так называемое лептонное число (лептонный заряд) L. Обычно принимают, что L=+1 для лептонов (e-, m-, t-, vе, , ), L= — 1 для антилептонов (e+, m+, t +) и L=0 для всех остальных элементарных частиц. Введение L позволяет сформулировать закон сохранения лептонного числа: в замкнутой системе при всех без исключения процессах взаимопревращаемости элементарных частиц лептонное число сохраняется. Основную часть элементарных частиц составляют адроны. К группе адронов относятся
Адронам приписывают барионное число (барионный заряд) В. Адроны с В= 0 образуют подгруппу мезонов (пионы, каоны, h-мезон),
а адроны с В=+1 образуют подгруппу барионов (от греч. «барис» — тяжелый; сюда относятся нуклоны и гипероны). Для лептонов и фотона В =0. Если принять для барионов В=+ 1, для антибарионов (антинуклоны, антигипероны) В=-1, а для всех остальных частиц B=0, то можно сформулировать закон сохранения барионного числа: в замкнутой системе при всех процессах взаимопревращаемости элементарных частиц барионное число сохраняется. Из закона сохранения барионного числа следует, что при распаде бариона наряду с другими частицами обязательно образуется барион. Барионы имеют спин, равный 1/2 (только спин W--гиперона равен 3/2), т. е. барионы, как и лептоны, являются фермионами. Странность 5 для различных частиц подгруппы барионов имеет разные значения. Мезоны имеют спин, равный нулю, и, следовательно, являются бозонами подчиняясь статистике Бозе — Эйнштейна. Для мезонов лептонные и барионные числа равны нулю. Из подгруппы мезонов только каоны обладают S= + l, а пионы и h-мезон имеют нулевую странность. Согласно модели Гелл-Манна — Цвейга, все известные в то время адроны можно было построить, постулировав существование трех типов кварков (и, d, s)и соответствующих антикварков (и^, d^, s^), если им приписать характеристики, указанные в табл. 9 (в том числе дробные! электрические и барионные заряды). Самое удивительное (почти невероятное) свойство кварков связано с их электрическим зарядом, поскольку еще никто не находил частицы с дробным значением элементарного электрического заряда. Спин кварка равен 1/2, поскольку только из фермионов можно «сконструировать» как фермионы (нечетное число фермионов), так и бозоны (четное число фермионов). Адроны строятся из кварков следующим образом: мезоны состоят из пары кварк — антикварк, барионы — их трех кварков (антибарион — из трех антикварков). Так, например, пион p+ имеет кварковую структуру ud^, пион p-— u^d, каон K+— ds^, протон — uud, нейтрон — udd, S +-гиперон — uus, S 0-гиперон — uds и т. д. Во избежание трудностей со статистикой (некоторые барионы, например W--гиперон, состоят из трех одинаковых кварков (sss), что запрещено принципом
|
||||
Последнее изменение этой страницы: 2016-12-15; просмотров: 414; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.89.89 (0.012 с.) |