Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Размеры и форма ядер. Дефект масс и энергия связи ядра. Удельная энергия связи. Ядерные силы и их свойства. Основные модели ядра.

Поиск

Строение атомного ядра.

Размеры и форма ядер. Дефект масс и энергия связи ядра. Удельная энергия связи. Ядерные силы и их свойства. Основные модели ядра.


Атомное ядро состоит из элементар­ных частиц — протонов и нейтронов (протонно-нейтронная модель ядра была пред­ложена советским физиком Д. Д. Иваненко (р. 1904), а впоследствии развита В. Гейзенбергом).

Протон (р) имеет положительный за­ряд, равный заряду электрона, и массу покоя mp=1,6726•10-27 кг »1836me, где me масса электрона.

Нейтрон (n) — нейтральная частица с массой покоя mn=1,6749•10-27кг»1839me,. Протоны и нейтроны называются нуклонами (от лат. nucleus — ядро).
Общее число нукло­нов в атомном ядре называется массовым числом А.

Атомное ядро характеризуется заря­дом Ze, где е — заряд протона, Z — за­рядовое число ядра, равное числу про­тонов в ядре и совпадающее с порядковым номером химического элемента в Периоди­ческой системе элементов Менделеева. Известные в настоящее время 107 элементов таблицы Менделеева имеют зарядовые числа ядер от Z=1 до Z=107.

Ядро обозначается тем же символом, что и нейтральный атом: , где X — символ химического элемента, Z — атом­ный номер (число протонов в ядре), А — массовое число (число нуклонов в ядре).

Ядра с одинаковыми Z, но разными А (т. е. с разными числами нейтронов N =А — Z) называются изотопами, а ядра с одинаковыми A, но разными Z — изоба­рами. Например, водород (Z=1) имеет три изотопа:

11Н — протий (Z=1, N=0),
21Н — дейтерий (Z=1, N= 1),
31Н — тритий (Z= 1, N= 2),
олово — десять, и т. д. В по­давляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и по­чти одинаковыми физическими свойствами (исключение составляют, например, изо­топы водорода), определяющимися в ос­новном структурой электронных оболочек, которая является одинаковой для всех изотопов данного элемента. Примером ядер-изобар могут служить ядра 104Be, 105B, 106C. В настоящее время известно бо­лее 2000 ядер, отличающихся либо Z, либо A, либо тем и другим.

Радиус ядра задается эмпирической формулой

R =R0A1/3,

где R0=(1,3—1,7) 10-15м. Однако при употреблении этого термина необходимо соблюдать осторожность (из-за его неод­нозначности, например из-за размытости границы ядра). Из формулы (251.1) вы­текает, что объем ядра пропорционален числу нуклонов в ядре. Следовательно, плотность ядерного вещества примерно одинакова для всех ядер (»1017 кг/м3

Энергия, которую необходимо затратить, чтобы расщепить ядро на отдельные нук­лоны, называется энергией связи ядра.

Ядерные силы. Модели ядра


Между составляющими ядро нуклонами действуют особые, специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются ядерными силами.

С помощью экспериментальных дан­ных (рассеяние нуклонов на ядрах, ядер­ные превращения и т. д.) доказано, что ядерные силы намного превышают грави­тационные, электрические и магнитные взаимодействия и не сводятся к ним. Ядерные силы относятся к классу так на­зываемых сильных взаимодействий.

Перечислим основные свойства ядер­ных сил:

1) ядерные силы являются силами притяжения;

2) ядерные силы являются коротко­действующими — их действие проявляется только на расстояниях примерно 10-15м. При увеличении расстояния между ну­клонами ядерные силы быстро уменьшают­ся до нуля, а при расстояниях, меньших их радиуса действия, оказываются при­мерно в 100 раз больше кулоновских сил, действующих между протонами на том же расстоянии;

3) ядерным силам свойственна зарядо­вая независимость: ядерные силы, дей­ствующие между двумя протонами, или двумя нейтронами, или, наконец, между протоном и нейтроном, одинаковы по вели­чине. Отсюда следует, что ядерные силы имеют неэлектрическую природу;

4) ядерным силам свойственно насы­щение, т. е. каждый нуклон в ядре взаимо­действует только с ограниченным числом ближайших к нему нуклонов. Насыщение проявляется в том, что удельная энергия связи нуклонов в ядре (если не учитывать легкие ядра) при увеличении числа нукло­нов не растет, а остается приблизительно постоянной;

5) ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов. Например, протон и нейтрон образуют дейтрон (ядро изотопа ) толь­ко при условии параллельной ориентации их спинов;

6) ядерные силы не являются цен­тральными, т. е. действующими по линии, соединяющей центры взаимодействующих нуклонов.

Сложный характер ядерных сил и трудность точного решения уравнений движения всех нуклонов ядра (ядро с мас­совым числом А представляет собой систе­му из А тел) не позволили до настоящего времени разработать единую последова­тельную теорию атомного ядра. Поэтому на данной стадии прибегают к рассмотре­нию приближенных ядерных моделей, в которых ядро заменяется некоторой мо­дельной системой, довольно хорошо опи­сывающей только определенные свойства ядра и допускающей более или менее про­стую математическую трактовку. Из боль­шого числа моделей, каждая из которых обязательно использует подобранные про­извольные параметры, согласующиеся с экспериментом, рассмотрим две: капель­ную и оболочечную.

1. Капельная модель ядра (1936; Н. Бор и Я.И.Френкель). Капельная мо­дель ядра является первой моделью. Она основана на аналогии между поведением нуклонов в ядре и поведением молекул в капле жидкости. Так, в обоих случаях силы, действующие между составными частицами — молекулами в жидкости и нуклонами в ядре,— являются коротко­действующими и им свойственно насыще­ние. Для капли жидкости при данных внешних условиях характерна постоянная плотность ее вещества. Ядра же характе­ризуются практически постоянной удель­ной энергией связи и постоянной плот­ностью, не зависящей от числа нуклонов в ядре. Наконец, объем капли, так же как и объем ядра пропорционален числу частиц. Существенное отличие ядра от капли жидкости в этой модели заключается в том, что она трактует ядро как каплю электрически заряженной не­сжимаемой жидкости (с плотностью, рав­ной ядерной), подчиняющуюся законам квантовой механики. Капельная модель ядра позволила получить полуэмпириче­скую формулу для энергии связи нуклонов в ядре, объяснила механизм ядерных ре­акций и особенно реакции деления ядер. Однако эта модель не смогла, например, объяснить повышенную устойчивость ядер, содержащих магические числа про­тонов и нейтронов.

2. Оболочечная модель ядра Оболочечная модель предполагает распределение нук­лонов в ядре по дискретным энергетиче­ским уровням (оболочкам), заполняемым нуклонами согласно принципу Паули, и связывает устойчивость ядер с запол­нением этих уровней. Считается, что ядра о полностью заполненными оболочками являются наиболее устойчивыми. Такие особо устойчивые (магические) ядра дей­ствительно существуют. Наиболее устойчивыми оказываются так называемые магические ядра, у которых число протонов или число нейтронов равно одному из магических чисел: 2, 8, 20, 28, 50, 82, 126. Особенно стабильны дважды магические ядра, у которых магическими являют­ся и число протонов, и число нейтронов (этих ядер насчитывается всего пять: Не, O, Ca, Ca, Pb).

Оболочечная модель ядра позволила объяснить спины и магнитные моменты ядер, различную устойчивость атомных ядер, а также периодичность изменений их свойств. Эта модель особенно хорошо при­менима для описания легких и средних ядер, а также для ядер, находящихся в ос­новном (невозбужденном) состоянии.

По мере дальнейшего накопления эк­спериментальных данных о свойствах атомных ядер появлялись все новые фак­ты, не укладывающиеся в рамки описан­ных моделей. Так возникли обобщенная модель ядра (синтез капельной и оболочечной моделей).

 

 

Радиоактивность.

Строение атомного ядра.

Размеры и форма ядер. Дефект масс и энергия связи ядра. Удельная энергия связи. Ядерные силы и их свойства. Основные модели ядра.


Атомное ядро состоит из элементар­ных частиц — протонов и нейтронов (протонно-нейтронная модель ядра была пред­ложена советским физиком Д. Д. Иваненко (р. 1904), а впоследствии развита В. Гейзенбергом).

Протон (р) имеет положительный за­ряд, равный заряду электрона, и массу покоя mp=1,6726•10-27 кг »1836me, где me масса электрона.

Нейтрон (n) — нейтральная частица с массой покоя mn=1,6749•10-27кг»1839me,. Протоны и нейтроны называются нуклонами (от лат. nucleus — ядро).
Общее число нукло­нов в атомном ядре называется массовым числом А.

Атомное ядро характеризуется заря­дом Ze, где е — заряд протона, Z — за­рядовое число ядра, равное числу про­тонов в ядре и совпадающее с порядковым номером химического элемента в Периоди­ческой системе элементов Менделеева. Известные в настоящее время 107 элементов таблицы Менделеева имеют зарядовые числа ядер от Z=1 до Z=107.

Ядро обозначается тем же символом, что и нейтральный атом: , где X — символ химического элемента, Z — атом­ный номер (число протонов в ядре), А — массовое число (число нуклонов в ядре).

Ядра с одинаковыми Z, но разными А (т. е. с разными числами нейтронов N =А — Z) называются изотопами, а ядра с одинаковыми A, но разными Z — изоба­рами. Например, водород (Z=1) имеет три изотопа:

11Н — протий (Z=1, N=0),
21Н — дейтерий (Z=1, N= 1),
31Н — тритий (Z= 1, N= 2),
олово — десять, и т. д. В по­давляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и по­чти одинаковыми физическими свойствами (исключение составляют, например, изо­топы водорода), определяющимися в ос­новном структурой электронных оболочек, которая является одинаковой для всех изотопов данного элемента. Примером ядер-изобар могут служить ядра 104Be, 105B, 106C. В настоящее время известно бо­лее 2000 ядер, отличающихся либо Z, либо A, либо тем и другим.



Поделиться:


Последнее изменение этой страницы: 2016-12-15; просмотров: 459; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.211.55 (0.009 с.)