Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Свойства линейных пространствСодержание книги Поиск на нашем сайте
1) В каждом линейном пространстве существует только один нулевой элемент. 2) Для каждого элемента существует только один противоположный элемент. 3) Для каждого Î L верно 0× = 0 4) Для каждого a Î R и Î L верно a× = 5) Если a× = , то a = 0 или = 6) (-1) = - Линейные преобразования Определение: Будем считать, что в линейном пространстве L задано некоторое линейное преобразование А, если любому элементу Î L по некоторому правилу ставится в соответствие элемент А Î L. Определение: Преобразование А называется линейным, если для любых векторов Î L и Î L и любого a верно: A( + ) = A +A A(a ) = aA
Определение: Линейное преобразование называется тождественным, если оно преобразует элемент линейного пространства сам в себя. Е =
Пример. Является ли А линейным преобразованием. А = + ; ¹ 0.
Запишем преобразование А для какого- либо элемента . А = + Проверим, выполняется ли правило операции сложения для этого преобразования А( + ) = + + ; A() + A() = + + + , что верно только при = 0, т.е. данное преобразование А нелинейное.
Определение: Если в пространстве L имеются векторы линейного преобразования , то другой вектор является линейной комбинацией векторов .
Определение: Если только при a = b = … = l = 0, то векторы называются линейно независимыми.
Определение: Если в линейном пространстве L есть n линейно независимых векторов, но любые n + 1 векторов линейно зависимы, то пространство L называется n-мерным, а совокупность линейно независимых векторов называется базисом линейного пространства L.
Следствие: Любой вектор линейного пространства может быть представлен в виде линейной комбинации векторов базиса.
Матрицы линейных преобразований
Пусть в n- мерном линейном пространстве с базисом , ,…, задано линейное преобразование А. Тогда векторы А ,А ,…,А - также векторы этого пространства и их можно представить в виде линейной комбинации векторов базиса:
A = a11 + a21 +…+ an1 A = a12 + a22 +…+ an2 ………………………………. A = an1 + an2 +…+ ann Тогда матрица А = называется матрицей линейного преобразования А.
Если в пространстве L взять вектор = x1 + x2 +…+ xn , то A Î L. , где ……………………………..
Эти равенства можно назвать линейным преобразованием в базисе , ,…, .
В матричном виде: , А× ,
Пример. Найти матрицу линейного преобразования, заданного в виде: x¢ = x + y y¢ = y + z z¢ = z + x x¢ = 1×x + 1×y + 0×z y¢ = 0×x + 1×y + 1×z z¢ = 1×x + 0×y + 1×z A =
На практике действия над линейными преобразованиями сводятся к действиям над их матрицами.
Определение: Если вектор переводится в вектор линейным преобразованием с матрицей А, а вектор в вектор линейным преобразованием с матрицей В, то последовательное применение этих преобразований равносильно линейному преобразованию, переводящему вектор в вектор (оно называется произведением составляющих преобразований). С = В×А
Пример. Задано линейное преобразование А, переводящее вектор в вектор и линейное преобразование В, переводящее вектор в вектор . Найти матрицу линейного преобразования, переводящего вектор в вектор . С = В×А
Т.е.
Примечание: Если ïАï= 0, то преобразование вырожденное, т.е., например, плоскость преобразуется не в целую плоскость, а в прямую.
Собственные значения и собственные векторы линейного преобразования
Определение: Пусть L – заданное n- мерное линейное пространство. Ненулевой вектор L называется собственным вектором линейного преобразования А, если существует такое число l, что выполняется равенство: A .
При этом число l называется собственным значением (характеристическим числом) линейного преобразования А, соответствующего вектору .
Определение: Если линейное преобразование А в некотором базисе , ,…, имеет матрицу А = , то собственные значения линейного преобразования А можно найти как корни l1, l2, …,ln уравнения:
Это уравнение называется характеристическим уравнением, а его левая часть- характеристическим многочленом линейного преобразования А.
Следует отметить, что характеристический многочлен линейного преобразования не зависит от выбора базиса.
Рассмотрим частный случай. Пусть А – некоторое линейное преобразование плоскости, матрица которого равна . Тогда преобразование А может быть задано формулами:
; в некотором базисе . Если преобразование А имеет собственный вектор с собственным значением l, то А .
или
Т.к. собственный вектор ненулевой, то х1 и х2 не равны нулю одновременно. Т.к. данная система однородна, то для того, чтобы она имела нетривиальное решение, определитель системы должен быть равен нулю. В противном случае по правилу Крамера система имеет единственное решение – нулевое, что невозможно.
Полученное уравнение является характеристическим уравнением линейного преобразования А.
Таким образом, можно найти собственный вектор (х1, х2) линейного преобразования А с собственным значением l, где l - корень характеристического уравнения, а х1 и х2 – корни системы уравнений при подстановке в нее значения l.
Понятно, что если характеристическое уравнение не имеет действительных корней, то линейное преобразование А не имеет собственных векторов. Следует отметить, что если - собственный вектор преобразования А, то и любой вектор ему коллинеарный – тоже собственный с тем же самым собственным значением l. Действительно, . Если учесть, что векторы имеют одно начало, то эти векторы образуют так называемое собственное направление или собственную прямую.
Т.к. характеристическое уравнение может иметь два различных действительных корня l1 и l2, то в этом случае при подстановке их в систему уравнений получим бесконечное количество решений. (Т.к. уравнения линейно зависимы). Это множество решений определяет две собственные прямые.
Если характеристическое уравнение имеет два равных корня l1 = l2 = l, то либо имеется лишь одна собственная прямая, либо, если при подстановке в систему она превращается в систему вида: . Эта система удовлетворяет любым значениям х1 и х2. Тогда все векторы будут собственными, и такое преобразование называется преобразованием подобия.
Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А = .
Запишем линейное преобразование в виде: Составим характеристическое уравнение: l2 - 8l + 7 = 0; Корни характеристического уравнения: l1 = 7; l2 = 1; Для корня l1 = 7: Из системы получается зависимость: x1 – 2x2 = 0. Собственные векторы для первого корня характеристического уравнения имеют координаты: (t; 0,5t) где t - параметр.
Для корня l2 = 1: Из системы получается зависимость: x1 + x2 = 0. Собственные векторы для второго корня характеристического уравнения имеют координаты: (t; -t) где t - параметр.
Полученные собственные векторы можно записать в виде:
Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А = .
Запишем линейное преобразование в виде:
Составим характеристическое уравнение: l2 - 4l + 4 = 0;
Корни характеристического уравнения: l1 = l2 = 2; Получаем: Из системы получается зависимость: x1 – x2 = 0. Собственные векторы для первого корня характеристического уравнения имеют координаты: (t; t) где t - параметр.
Собственный вектор можно записать: .
Рассмотрим другой частный случай. Если - собственный вектор линейного преобразования А, заданного в трехмерном линейном пространстве, а х1, х2, х3 – компоненты этого вектора в некотором базисе , то , где l - собственное значение (характеристическое число) преобразования А.
Если матрица линейного преобразования А имеет вид:
, то
Характеристическое уравнение:
Раскрыв определитель, получим кубическое уравнение относительно l. Любое кубическое уравнение с действительными коэффициентами имеет либо один, либо три действительных корня. Тогда любое линейное преобразование в трехмерном пространстве имеет собственные векторы.
Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А = .
Составим характеристическое уравнение:
(1 - l)((5 - l)(1 - l) - 1) - (1 - l - 3) + 3(1 - 15 + 3l) = 0 (1 - l)(5 - 5l - l + l2 - 1) + 2 + l - 42 + 9l = 0 (1 - l)(4 - 6l + l2) + 10l - 40 = 0 4 - 6l + l2 - 4l + 6l2 - l3 + 10l - 40 = 0 -l3 + 7l2 – 36 = 0 -l3 + 9l2 - 2l2 – 36 = 0 -l2(l + 2) + 9(l2 – 4) = 0 (l + 2)(-l2 + 9l - 18) = 0
Собственные значения: l1 = -2; l2 = 3; l3 = 6;
1) Для l1 = -2:
Если принять х1 = 1, то Þ х2 = 0; x3 = -1;
Собственные векторы:
2) Для l2 = 3:
Если принять х1 = 1, то Þ х2 = -1; x3 = 1;
Собственные векторы:
3) Для l3 = 6:
Если принять х1 = 1, то Þ х2 = 2; x3 = 1;
Собственные векторы:
Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А = .
Составим характеристическое уравнение:
-(3 + l)((1 - l)(2 - l) – 2) + 2(4 - 2l - 2) - 4(2 - 1 + l) = 0 -(3 + l)(2 - l - 2l + l2 - 2) + 2(2 - 2l) - 4(1 + l) = 0 -(3 + l)(l2 - 3l) + 4 - 4l - 4 - 4l = 0 -3l2 + 9l - l3 + 3l2 - 8l = 0 -l3 + l = 0 l1 = 0; l2 = 1; l3 = -1;
Для l1 = 0:
Если принять х3 = 1, получаем х1 = 0, х2 = -2 Собственные векторы ×t, где t – параметр.
Для самостоятельного решения: Аналогично найти и для l2 и l3.
Квадратичные формы
Определение: Однородный многочлен второй степени относительно переменных х1 и х2 Ф(х1, х2) = а 11
не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1 и х2.
Определение: Однородный многочлен второй степени относительно переменных х1, х2 и х3
не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1, х2 и х3.
Рассмотрим квадратичную форму двух переменных. Квадратичная форма имеет симметрическую матрицу А = . Определитель этой матрицы называется определителем квадратичной формы.
Пусть на плоскости задан ортогональный базис . Каждая точка плоскости имеет в этом базисе координаты х1, х2. Если задана квадратичная форма Ф(х1, х2) = а 11 , то ее можно рассматривать как функцию от переменных х1 и х2.
|
|||||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 189; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.44.46 (0.011 с.) |