Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Приведение квадратичных форм к каноническому виду↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги
Поиск на нашем сайте
Рассмотрим некоторое линейное преобразование А с матрицей . Это симметрическое преобразование можно записать в виде: y1 = a11x1 + a12x2 y2 = a12x1 + a22x2 где у1 и у2 – координаты вектора в базисе . Очевидно, что квадратичная форма может быть записана в виде Ф(х1, х2) = х1у1 + х2у2.
Как видно, геометрический смысл числового значения квадратичной формы Ф в точке с координатами х1 и х2 – скалярное произведение . Если взять другой ортонормированный базис на плоскости, то в нем квадратичная форма Ф будет выглядеть иначе, хотя ее числовое значение в каждой геометрической точке и не изменится. Если найти такой базис, в котором квадратичная форма не будет содержать координат в первой степени, а только координаты в квадрате, то квадратичную форму можно будет привести к каноническому виду. Если в качестве базиса взять совокупность собственных векторов линейного преобразования, то в этом базисе матрица линейного преобразования имеет вид: .
При переходе к новому базису от переменных х1 и х2 мы переходим к переменным и . Тогда:
Тогда .
Выражение называется каноническим видом квадратичной формы. Аналогично можно привести к каноническому виду квадратичную форму с большим числом переменных. Теория квадратичных форм используется для приведения к каноническому виду уравнений кривых и поверхностей второго порядка.
Пример. Привести к каноническому виду квадратичную форму Ф(х1, х2) = 27 .
Коэффициенты: а11 = 27, а12 = 5, а22 = 3. Составим характеристическое уравнение: ; (27 - l)(3 - l) – 25 = 0 l2 - 30l + 56 = 0 l1 = 2; l2 = 28;
Пример. Привести к каноническому виду уравнение второго порядка: 17x2 + 12xy + 8y2 – 20 = 0.
Коэффициенты а11 = 17, а12 = 6, а22 = 8. А = Составим характеристическое уравнение: (17 - l)(8 - l) - 36 = 0 136 - 8l - 17l + l2 – 36 = 0 l2 - 25l + 100 = 0 l1 = 5, l2 = 20. Итого: - каноническое уравнение эллипса.
Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график. Решение: Составим характеристическое уравнение квадратичной формы : при Решив это уравнение, получим l1 = 2, l2 = 6. Найдем координаты собственных векторов: полагая m1 = 1, получим n1 = полагая m2 = 1, получим n2 = Собственные векторы: Находим координаты единичных векторов нового базиса. Имеем следующее уравнение линии в новой системе координат: Каноническое уравнение линии в новой системе координат будет иметь вид: Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график. Решение: Составим характеристическое уравнение квадратичной формы : при Решив это уравнение, получим l1 = 1, l2 = 11. Найдем координаты собственных векторов: полагая m1 = 1, получим n1 = полагая m2 = 1, получим n2 = Собственные векторы: Находим координаты единичных векторов нового базиса. Имеем следующее уравнение линии в новой системе координат: Каноническое уравнение линии в новой системе координат будет иметь вид:
Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график. 4ху + 3у2 + 16 = 0
Коэффициенты: a11 = 0; a12 = 2; a22 = 3. Характеристическое уравнение: Корни: l1 = -1, l2 = 4.
Для l1 = -1 Для l2 = 4
m1 = 1; n1 = -0,5; m2 = 1; n2 = 2;
= (1; -0,5) = (1; 2)
Получаем: -каноническое уравнение гиперболы.
|
||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 156; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.30.14 (0.008 с.) |