Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
I. Первая особенность связана с характером распространения возбуждения в цнс, а именно, с существование двух процессов: дивергенции (разведение) и конвергенции (сведение).Содержание книги
Поиск на нашем сайте
Дивергенция. Афферентные волокна периферических рецепторов входят в спинной мозг через задние корешки и ветвятся на множество коллатералей. Конвергенция. С другой стороны, импульсы приходящие в ЦНС по различным афферентным путям могут сходится конвергировать на одних и тех же вставочных нейронах. Количество входов (т.е. синапсов) для большинства центральных нейронов составляет от десятков до нескольких тысяч. Так что можно говорить о принципе конвергенции в нейронных сетях. Наличие конвергенции обуславливает существование принципа общего конечного пути, сформулированного Ч. Шеррингтоном.: эффекторные нейроны образуют общий конечный путь для многих рефлексов и могут быть связаны с различными рецепторами. Связь осуществляется через промежуточные нейроны. Общее число рецепторных нейронов примерно в 5 раз больше эффекторных (исполнительных). II. Вторая особенность - существование реципрокных взаимоотношений. Центры мышц-антагонистов - сгибателей и разгибателей находятся при выполнении многих двигательных актов в противоположном состоянии. Именно за счет этого возможно точное сгибание или разгибание. Анализ подобных явлений привел к представлению о реципрокной или сопряженной иннервации мышц-анатагонистов. Согласно такому представлению, возбуждение центра одной группы мышц сопровождается реципрокным (сопряженным) торможением центров антагонистических мышечных групп. Механизм реципрокного торможения связан с наличием вставочных тормозных нейронов. III. Третья особенность - наличие иррадиации возбуждения. Импульсы, поступающие в ЦНС от рецепторов, вызывают возбуждение не только нейронов данного НЦ, но и других.. Физиологическая роль иррадиации возбуждения состоит в том, что любой рефлекторный акт осуществляется как целостная реакция ЦНС. Вместе с тем, чрезмерное возбуждение нарушает нормальную деятельность ЦНС и иррадиацию возбуждения ограничивают тормозные механизмы (прямое и непрямое - возвратное, пре- и постсинаптическое). IY. Четвертая особенность связана с наличием доминантных очагов возбуждения в нервной системе. Принцип доминанты был сформулирован А.А.Ухтомским и является одним из основных принципов координации нервной деятельности. Согласно принципу доминанты, для деятельности НС как единого целого в естественных условиях существования, на каждый момент времени характерно наличие главенствующих (доминантных) очагов возбуждения, изменяющих и подчиняющих себе работу остальных нервных центров. Речь идет о том, что среди рефлекторных актов, которые могут быть выполнены в данный момент времени, имеются рефлексы, которые являются для организма наиболее важными. Поэтому эти рефлексы реализуются, а другие тормозятся. Y. Пятая особенность - существование обратной связи. Всякий двигательный акт, вызываемый тем или иным афферентным раздражением, сопровождается возбуждением рецепторов мышц, связок, сухожилий, от которых возбуждение идет в ЦНС. Если движение контролируется зрением, идет еще возбуждение от зрительного анализатора, при наличии звуков и от слухового (музыканты). Такая активность, возникающая в организме в результате ответной деятельности органов и тканей называют вторичной афферентацией. Вторичные афферентные импульсы непрерывно сигнализируют НЦ о состоянии исполнительного аппарата. В ответ на это из ЦНС к рабочим органам поступают новые импульсы, изменяющие их деятельность в соответствии с новыми условиями. Таким образом, вторичная афферентация осуществляет функцию, известную в технике под названием обратной связи. Благодаря существованию обратной связи между НЦ и рабочими органами интенсивность возбуждения различных групп нейронов в НЦ и последовательность его уровня активации строго согласуются с рабочим эффектом, т.е. мышечным движением. Память Под памятью понимают свойство живых систем, в частности, ЦНС, воспринимать, фиксировать, хранить и воспроизводить следы ранее действующих раздражителей. Биологическая память лежит в основе жизни. Для того чтобы себя воспроизвести живая система должна помнить свое строение и функции. Память о своем строении и функции не отделима от живого субстрата и называется генетической памятью. В дальнейшем, в ходе эволюции на ее основе возникли более сложные формы памяти: иммунологическая и нервная память. Таким образом, выделяют три формы памяти: генетическую (биологическую), иммунологическую и нервную. Генетическая память - это память биологического вида, согласно которой воспроизводится вся структурно-функциональная организация его представителей, включая и их поведение. Чем большую долю поведения определяет генетическая память для данного вида животного, тем менее приспособлены они к быстрым изменениям внешней среды. Генетическая часть составляет существенную часть памяти даже у высоко организованных организмов. Материальным носителем видовой памяти является генетический аппарат клеток - ДНК. Второй формой памяти, более поздно развивающейся в ходе эволюции, является иммунологическая память, которая тесно связана с генетической. Она проявляется в способности иммунной системы усиливать защитную реакцию организма на повторное проникновение в него генетически инородных тел (вирусов, бактерий и др.). Все чужеродные вещества, вторгшиеся в организм, независимо от их разновидности принято называть антигенами. Иммунные белки, способные разрушать чужеродные тела, получили название антител. Роль иммунологической памяти состоит в том, что после первой встречи с генетически чужеродными антигенами организм способен узнавать их и при повторной встрече включать неспецифические механизмы уничтожения. Иммунный ответ осуществляется двумя системами. Третьей формой памяти является нервная память, обеспечивающая животным, обладающим нервной системой, индивидуальные формы приспособления к окружающей среде. Специализация клеток, в том числе и нервных, является приобретением эволюции. Поэтому нервная память появилась позже генетической. Учитывая, что природа часто использует древние механизмы при формировании более новых, нервная память, по-видимому, тоже базируется на механизмах древней, первичной памяти. Поскольку запоминание внешних воздействий происходит даже у одноклеточных организмов, функция памяти представлена на уровне отдельных нервных клеток. Тем не менее нервная память является свойством целой специализированной структуры - центральной нервной системы, и у животных, и у человека. В эволюции она возникла в связи с дифференциацией нервной системы и оказалась самой сложной по проявлениям и механизмам. Временная организация памяти. Другим основанием для классификации памяти является продолжительность закрепления и сохранения материала. Принято подразделять память на три вида или этапа: иконическую, или сенсорную, память (ИП); кратковременную память (КВП); долговременную, или декларативную, память (ДВП). Сенсорная память связана с удержание сенсорной информации (доли секунд) и служит первичному анализу и дальнейшей обработке сенсорных событий. Во время этой стадии информация организуется в отдельные информационные единицы (чанки), часть из которых впоследствии получает доступ к долговременной памяти. Остальная информация из сенсорной памяти устраняется путем спонтанного разрушения или стирания при поступлении новой. Сенсорный след занимает больше времени, чем само воздействие. Длительность хранения в иконической памяти составляет 250-400 мс, в слуховом сенсорном регистре или эхоической памяти сенсорная копия акустической информации может удерживаться дольше от 250 мсек до 4 сек. (Солсо, 1996, с. 71). Главная особенность сенсорной памяти - ее относительно неограниченная емкость. Этим обеспечивается возможность эффективного функционирования других стадий памяти путем выбора, фиксации и переработки наиболее важной для организма информации. Из сенсорной памяти информация, в зависимости от ее характера, может транспортироваться двумя путями. Невербальный материал непосредственно поступает в промежуточную (вторичную, лабильную) память, где может хранится от нескольких минут до длительного времени. Вербальная (речевая) информация передается в кратковременную (КП - первичная) память, где длительность хранения не превышает 1 минуты. КП имеет ограниченную емкость равную 7±2 единицы - чанка (магическое число Миллера, опыт Джонсона). Было обнаружено, что диапазон кратковременного запоминания связан с интеллектом. Позднее, Альфред Бине включил это показатель в тест на интеллект. Наиболее прочное удержание материала обеспечивает долговременная (третичная) память. Есть гипотезы, что обработка и перевод информации из промежуточной памяти в долговременную происходит в два этапа. Первый этап - логическая обработка материала происходит в период дельта-сна. Второй этап - ввод в долговременную память осуществляется в период быстрого сна (но это лишь гипотезы). Материальными носителями памяти человека являются миллиарды нейронов и бесконечное множество связей, синапсов (греч..sinapsis -соединение, связь, специальная зона контакта) между ними. В конечном счете память - это некая последовательность событий на молекулярном уровне. Изменение процессов обмена в нейроне, включая изменения в генетическом аппарате клетки, обуславливают формирование новых синаптических связей между нейронами. Нарушения сенсорной памяти происходит при воздействии электрошока, гипотермии, М-холинолитиков (атропин, скополамин) и других факторов, нарушающих синаптическую передачу. Поэтому вероятный механизм сенсорной памяти состоит в весьма кратковременном изменений проводимости синапсов за счет воздействия медиатора на мембрану и циклической ревеберации импульсов в нервной сети. Следующая стадия - кратковременная (КП - первичная) память. Воснове кратковременной памяти может быть, во-первых, повышение синаптической проводимости, связывающей определенные нейроны, во-вторых ревеберация импульсов, основанная на ряде электрохимических реакций, не связанных с синтезом макромолекул. В организации замкнутых нейронных цепей могут принимать участие как процессы самоорганизации, связанные с резонансными свойствами нейронов, так и тормозные интернейроны, участвующие в процессах возвратного торможения. Третья стадия - долговременная или пожизненная память. Для нее не описаны факторы способные ее разрушить, за исключением повреждения или разрушения структур мозга. Для ДП обязательна активация и образование внутриклеточных устойчивых систем, обеспечивающих стойкие изменения синаптических проводимостей клетки. Синаптические гипотезы. Свое название эти гипотезы получили из-за того, что главное внимание в них уделяется роли синапса в фиксации следа памяти. При прохождении импульса через определенную группу нейронов возникают стойкие изменения синаптической проводимости в пределах определенного нейронного ансамбля. (Первые исследования физиологических основ памяти связаны с именем канадского психолога Дональда. Хебба. В 40-е годы ХХ столетия он ввел понятия кратковременной и долговременной памяти и предложил теорию, объясняющую их нейрофизиологическую природу.) По Хеббу, долговременная память базируется на структурных изменениях, возникающих в результате модификации межклеточных контактов - синапсов. Хебб полагал, что эти структурные изменения связаны с повторной активацией (по его определению - “повторяющейся реверберацией возбуждения”) замкнутых нейронных цепей, например, путей от коры к таламусу или гиппокампу и обратно к коре. Повторное возбуждение нейронов, образующих такую цепь, приводит к тому, что в них возникают долговременные изменения, связанные с ростом синаптических соединений и увеличением площади их контакта между пресинаптическим аксоном и постсинаптической клеточной мембраной. После установления таких связей эти нейроны образуют клеточный ансамбль, и любое возбуждение хотя бы одного относящегося к нему нейрона, приводит в возбуждение весь ансамбль. Это и есть нейрональный механизм хранения и извлечения информации из памяти. Непосредственно же основные структурные изменения, согласно Хеббу, происходят в синапсах в результате процессов их роста или метаболических изменений, усиливающих воздействие каждого нейрона на следующий нейрон.
|
||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 365; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.224.97 (0.007 с.) |