Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Все современные клетки используют ДНК в качестве наследственного материала

Поиск

Нарисованная нами выше картина, конечно, весьма умозрительна. Не существует ископаемых остатков, по которым можно было бы проследить зарождение первой клетки. Тем не менее анализ современных организмов и лабораторные опыты убедительно показывают, что в основных чертах наш эволюционный обзор справедлив. События, обусловившие образование первой клетки (пребиотический синтез малых молекул, саморепликация молекул РНК, трансляция последовательностей РНК в аминокислотные последовательности, возникновение окруженных мембранами компартментов в результате самосборки молекул липидов), очевидно, происходили 3,5-4 млрд. лет назад.

Полезно сравнить нашу гипотетическую первую клетку с простейшими современными клетками, микоплазмами. Микоплазмы это похожие на бактерий мелкие организмы, обычно ведущие паразитический образ жизни, тесно связанный с какими-либо клетками растений или животных (рис. 1-10). Они имеют в диаметре около 0,3 мкм и содержат нуклеиновую кислоту в количестве, достаточном для кодирования приблизительно 750 различных белков. Некоторые из этих белков являются ферментами, другие выполняют структурные функции, часть белков находится внутри клетки, но есть и встроенные в ее мембрану. Все вместе они синтезируют те из нужных клетке малых молекул, которых нет в окружающей среде, перераспределяют энергию, необходимую для протекания биосинтетических реакций, и поддерживают в клетке необходимые химические условия.

Первые клетки на Земле, по-видимому, содержали значительно меньше компонентов, чем микоплазмы, и делились значительно медленнее. Однако существует и более существенное различие между примитивными клетками и микоплазмами (и, разумеется, любыми другими современными клетками): генетическая информация в существующих ныне клетках хранится в ДНК, а не в РНК, что было присуще примитивным клеткам. В современных клетках есть оба типа полинуклеотидов, но в ходе эволюции они специализировались и работают сообща, выполняя каждый свою функцию. Небольшие химические различия между этими двумя типами молекул делают их приспособленными для решения разных задач. Например, ДНК используется в качестве хранилища генетической информации, поскольку ее молекула более стабильна, чем молекула РНК. Частично это обусловлено тем, что у ДНК отсутствует гидроксильная группа сахара, и поэтому РНК в большей степени подвержена гидролизу. Кроме того, ДНК в отличие от РНК существует преимущественно в виде двухцепочечных молекул, состоящих из двух комплементарных полинуклеотидных цепей, Такая двухцепочечная структура позволяет ДНК относительно легко реплицироваться (что будет изложено в гл. 3) и репарировать повреждения: при этом неповрежденная цепь ДНК служит матрицей для восстановления комплементарной дефектной цепи. Используя все тот же принцип комплементарности, ДНК направляет синтез отдельных молекул РНК, однако в этом случае спаривание происходит между несколько различающимися типами нуклеотидов. Синтезированные таким образом одноцепочечные молекулы РНК выполняют две другие функции первобытных полинуклеотидов: они направляют синтез белков и как кодирующие молекулы (информационные РНК), и как каталитические молекулы (рибосомные и другие неинформационные РНК).

 

Рис. 1-10. Предполагаемые стадии эволюции от простых самореплицирующихся систем молекул РНК до современных клеток, у которых ДНК является хранилищем генетической информации, а РНК выполняет роль посредника в осуществлении белкового синтеза.

 

Существующие на сегодняшний день представления об эволюции первобытных молекул можно суммировать так. Генетические и каталитические свойства РНК позволяют предположить, что именно эти молекулы первыми включились в эволюцию. После возникновения эффективного синтеза белка ДНК приняла на себя генетическую функцию, белки стали основными катализаторами, а РНК сохранилась главным образом как промежуточное звено между ними (рис. 1-12). ДНК стала необходимой только тогда, когда клетки сильно усложнились и для них потребовалось значительно больше генетической информации, чем та, которую могли стабильно поддерживать молекулы РНК.

Заключение

Живые клетки скорее всего появились на Земле приблизительно 3,5 млрд, лет назад в результате спонтанной агрегации молекул.

Изучение современных организмов и содержащихся в них молекул позволяет предполагать, что развитие автокаталитических механизмов, присущих живым системам, началось с эволюции группы молекул РНК, которые могли катализировать собственную репликацию. Со временем одна из этих групп согласованно катализирующих РНК приобрела способность к прямому синтезу полипептидов. Первые клетки, по-видимому, широко использовали каталитические функции и РНК, и белков, а в качестве вещества наследственности содержали только РНК. После того как накопление дополнительных каталитических белков сделало возможным развитие более эффективных и сложных клеток, двухцепочечная ДНК заменила РНК в роли хранителя генетической информации.

 

 

Лекция №2.



Поделиться:


Последнее изменение этой страницы: 2016-12-28; просмотров: 101; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.20.30 (0.008 с.)