Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Особенности липидного обмена в органахСодержание книги Поиск на нашем сайте
Печень Как и в обмене углеводов, печень играет ведущую роль в обмене липидов. Почти исключительно в печени локализованы процессы: 1. Биосинтез холестерина (из ацетил-КоА) "эндогенного", катаболизм холестерина, образование холестеридов ЛПОНП, ЛПВП. 2. Образование фосфолипидов (лецитин, кефалин, серилфосф.). 3. Биосинтез ЛП (ЛОНП, ЛВП). 4. обмен желчных кислот (биосинтез, выведение, обратное всасывание). Таким образом, организм располагает только несколькими грамами жирных кислот (внутриклеточный фонд, желчный пузырь, желчные протоки), лишь несколько мг избегают обратного всасывания и попадают в экскременты. 5. Образование кетоновых тел (ацетоуксусная кислота, в-гидроксимасляная кислота, ацетон) - экспорт энергетического материала, регуляция синтеза и распада ТГ в жировых депо. 6. Биосинтез НЭЖК, переработка использованных ЖК с короткой углеродной цепью (особенно у детей). 7. Биосинтез ТГ (в норме резервы ТГ ў1% от веса печени), работа на экспорт.
Жировая ткань В норме жиры составляют около15% массы тела взрослого человека в зависимости от возраста, телосложения, пола (возможны широкие вариации). Резервы липидов сосредоточены в определенных анатомических образованиях (сальниковая брыжейка, костный мозг, подкожная клетчатка). Эти специальные жировые депо составляют высокодифференцированную жировую ткань, которая содержит специальные жировые клетки - адипоциты. Данные клетки достаточно метаболически активны: а) синтез НЭЖК в периоды изобилия; б) синтез ТГ (из ЖК своих и транспортируемых и продуктов глю??); в) располагают активными механизмами освобождения ЖК из ТГ и обеспечение ими тканей в периоды???. Кроме энергетической жировые отложения имеют другие функции: 2. изолирование глубокорасположенных органов от воздействия холода и чрезмерного тепла. 3. предохранение костей, органов, тканей от ударов и толчков. 4. "сглаживание" острых углов скелета, придавая формам тела округлость (эстетичность и привлекательность). Полностью загруженный адипоцит состоит из тонкого пояска цитоплазмы, окружающей жировую каплю - липиды могут составлять 90% массы жировой ткани (среди них 99% ТГ), причем жиры более насыщены, чем в печени; тем не менее у человека в резервных жирах более 1/2 олеиновой (18:1) и линолевой (18:2).
Мышцы Широко распространенное мнение о том, что мышцы удовлетворяют свои потребности в энергии за счет только углеводов, ошибочно (в основном это за счет глюкозы в анаэробных условиях и за счет быстрого распада мышечного гликогена при работе) - обычно это кратковременная мышечная нагрузка. В состоянии же покоя главным источником энергии для мышечной ткани являются жирные кислоты (окисление). Сердечная же мышца и гладкомышечные стенки кровеносных сосудов используют жиры и продукты их распада больше и охотней не только в период покоя, но и функционального напряжения. Длительная, средняя по напряженности работа скелетных мышц () требует катаболизма как углеводов, так и липидов, причем по мере увеличения длительности физической нагрузки. Помогают в этом такие гормоны, как катехоламины, глюкагон (стимулирует использование гликогена тканями и одновременно ускоряет липолиз в жировых депо). Помимо набора ферментов для окисления жирных кислот, в тканях есть ферменты, охотно окисляющие кетоновые тела.
Мозг, нервная ткань особенно богата липидами, которые могут составлять до 1/2 общей массы. Ткань мозга и нервов содержит немного ТГ, большая часть сложные липиды: ФЛ, сфингозин (липиды содержат аминоспирты с длинной углеродной цепью), холестерин (только в свободном виде). Все эти липиды могут быть синтезированы в ткани мозга из глюкозы и других низкомолекулярных соединений, особенно ЖК (все ЖК идут только на синтез ФЛ и сфингозина). Митохондрии мозга и нервной инертны в отношении в-окисления ивесь ацетил-КоА получается из глюкозы, следовательно, основной источник энергии и активных соединений - глюкоза; в какой-то мере могут окисляться кетоновые тела (особенно при голодании!).
Лекция 7 Общие аспекты метаболизма. В живых организмах, находящихся в процессе постоянного контакта и обмена с окружающей средой, происходят непрерывные химические изменения, составляющие их метаболизм (множество ферментативных реакций). Масштабы и направление метаболических процессов очень разнообразны. Примеры: а) число клеток E.coli в бактериальной культуре может удваиваться на 2/3 за 20 минут в простой среде с глюкозой и неорганическими солями. Эти компоненты поглощаются, но лишь немногие выделяются в среду растущей бактериальной клеткой, а она состоит приблизительно из 2.5 тыс. белков, 1 тыс. органических соединений, разнообразных нуклеиновых кислот в количестве 10-3*10 молекул. Очевидно, что эти клетки участвуют в грандиозном биологическом спектакле,в котором планово поставляются огромное количество биомолекул необходимых для роста клеток. Не менее сильно впечатляет метаболизм взрослого человека, который сохраняет неизменную массу и состав тела приблизительно 40 лет, хотя за это время потребляет около 6 тонн твердой пищи и 37850 литров воды. Все вещества в организме превращаются (сложные в простые и наоборот) 2/3 ряд последовательных соединений, каждое из которых называется метаболитом. Каждое превращение - этап метаболизма. F1 F2 F3 F4 A B C D E Совокупность таких последовательных стадий катализируемых отдельными ферментами называется метаболическим путем. Из совокупности образных метаболических путей, их совместного функционирования складывается метаболизм. Это осуществляется последовательно а не хаотично (синтез аминокислот, распад глюкозы, жирных кислот, синтез пуриновых оснований). Мы знаем очень мало, отсюда и механизм действия лекарственных веществ очень прозрачен!!! Весь путь метаболизма контролируется обычно первым - вторым этапом метаболизма (лимитирующий фактор, ферменты с аллостерическим центром - регуляторные). Такие этапы называются ключевыми, а метаболиты на этих этапах ключевыми метаболитами. Метаболиты, находящиеся на перекрестных путях метаболизма называются узловыми метаболитами.
G F5 F1 F2 F3 A B C D F4 Е
Есть циклические пути обмена а) обычно участвует другое вещество и исчезает б) клетка обходится малым количеством метаболитов - экономия. Контрольные пути превращение основных питательных веществ T М D N K
Вторичный метаболизм образование веществ, требующихся в малых количествах.
Метаболический блок - нарушение этапа метаболизма.
Диагностика: по продуктам, субстрату (не обязательно проявляются); по активному ферменту (точно!).
Фен пища Тир Альбинизм Эндемический зоб
пигмент гомогент. к-та Тироксин меланина Алкаптурия
углекислый газ и вода
Регуляция метаболизма
Каждая реакция идет со скоростью, соизмеримой с потребностью клетки ("умные" клетки!). Эти специфические определяют регуляцию метаболизма.
I. Регуляция скорости поступления метаболитов в клетку (на перенос влияют молекулы воды и градиента концентрации). а) простая диффузия (например вода) б) пассивный транспорт (нет затраты энергии, например пентозы) в) активный транспорт (система переносчиков, АТФ)
II. Контроль количества некоторых ферментов Подавление синтеза ферментов конечным продуктом метаболизма. Это явление представляет собой грубый контроль метаболизма, например синтез ферментов, синтезирующих ГИС подавляется в присутствии ГИС в среде, бактериальной культуре. Грубый контроль - так как он реализуется в течение длительного времени пока разрушаются готовые молекулы фермента. Индукция одного или нескольких ферментов субстратами (увеличение концентрации специфического фермента). У млекопитающих подобное явление наблюдается спустя несколько часов или суток в ответ на индуктор.
III. Контроль каталитической активности а) ковалентная (химическая) модификация б) аллостерическая модификация (+/-) связи Модуляция активности уже присутствующим ферментом - это в основном аллостерическая регуляция (гомо-, гетеро-, гомогетероферменты) или действие активаторов - это тонкий механизм регуляции, так как мгновенно действует в ответ на изменение внутриклеточной среды. Эти регуляторные механизмы эффективны на клеточном и субклеточном уровнях, на межклеточном и органном уровнях регуляции, осуществляющейся гормонами, нейромедиаторами, внутриклеточными медиаторами, простогландинами.
Пути метаболизма: 1) катаболические 2) анаболические 3) амфоболитические (связывают первых два)
Катаболизм - последовательность ферментативных реакций, в результате которых происходит разрушение в основном за счет реакций окисления крупных молекул (углеводы, белки, липиды, нуклеиновые кислоты) с образованием легких (молочной и уксусной кислот, углекислого газа и воды) и выделением энергии заключенной в ковалентных связях различных соединений, часть энергии запасается в виде макроэргических связей, идущих затем на механическую работу, транспорт веществ, биосинтез крупных молекул. Различают три стадии катаболизма: I стадия - Пищеварение. Крупные пищевые молекулы расщепляются на строительные блоки под влиянием пищеварительных ферментов в ЖКТ, при этом выделяется 0.5-1% энергии, заключающейся в связях. II стадия - Унификации. Большое число продуктов, образовавшихся на 1 стадии дает во 2 стадии более простые продукты, Число которых невелико, при этом освобождается около 30% энергии. Ценна эта стадия еще тем, что освобождение энергии на этом этапе дает начало синтезу АТФ в бескислородных (анаэробных) условиях, что важно организму в условиях гипоксии. III стадия - Цикл Кребса. (трикарбоновых кислот / лимонной кислоты). По сути это процесс превращения двухуглеродного соединения (уксусная кислота) в 2 моль углекислого газа, но этот путь очень сложный, циклический, многоферментный, основной поставщик электронов в дыхательную цепь, и соответственно молекул АТФ в процессе окислительного фосфорилирования. Почти все ферменты цикла находятся внутри митохондрий, поэтому доноры электронов ЦТК свободно отдают электроны непосредственно дыхательной цепи мембранной системы митохондрий.
Схема Цикла трикарбоновых кислот.
Сукцинил КоА - содержит макроэргическую тиоэфирную связь, способную трансформироваться в макроэргическую связь ГТФ (субстратное фосфорилирование). ФАД - передает электроны на КoQ дыхательной цепи: электрон альфакетоглутарат вода изоцитрат альфакетоглутарат сукцинил КоА СО2
Кроме всего ЦТК - это 1 стадия одновременно анаболизма.
Анаболические Катоболические пути пути
Высокомолекулярные Низкомолекулярные продукты продукты
Физиологические Выведение из функции организма
Анаболизм - это ферментативный синтез с затратой энергии крупных клеточных компонентов, включающий 3 стадии I стадия - это III стадия катаболизма, а другие 2 совпадают по использующимся ферментам и промежуточным продуктам, но есть и различия: 1) различные ферментные системы. 2) локализация процессов различна (например окисление жирных кислот идет в митохондриях, а синтез - в цитоплазме). 3) различные механизмы аллостерической и генетической регуляции. 4) различный качественный состав конечных продуктов анаболизма. 5) затрата энергии при анаболизме и выделение при катабо лизме. Есть в организме и амфиболические пути (одновременно идет и процесс распада и процесс синтеза). Наиболее крупные: а) гликолиз фосфотриозы ацетил КоА б) ЦТК ацетил КоА СО2 + Н2О
Распад разобрали, но из многих продуктов ЦТК могут образовываться различные соединения: а) щавелевоуксусная кислота асп, асн, глю б) альфакетоглутарат глу, глн, глю в) лимонная кислота в цитоплазму ацетил КоА жирные кислоты, стероиды г) сукцинил КоА гем
ГЕНЕТИЧЕСКИЙ КОД. МЕХАНИЗМЫ ТРАНСЛЯЦИИ.
ГЕНЕТИЧЕСКИЙ КОД - это зашифровка последовательности аминокислот путем последовательности чередования нуклеотидов. Доказательство прямого соответствия между генами и белками и раскрытие химической природы генов выдвинули на первый план вопрос о том, каким образом последовательность нуклеотидов в ДНК может программировать последовательность аминокислот в полипетидной цепи. Поскольку и генная ДНК, и белки состоят из линейных, неразветвленных цепей, следовательно предположили, а затем и доказали, что трансляция - это последовательный процесс, в ходе которого строящийся белок наращивается по одной аминокислоте в порядке, соответствующем порядку расположения нуклеотидных оснований в гене.
СВОЙСТВА ГЕНЕТИЧЕСКОГО КОДА:
* триплетность, * вырожденость, * универсальность, * последовательность, * неперекрываемость, * коллинеарность.
ТРИПЛЕТНОСТЬ.
Поскольку в состав белка входит 20 различных аминокислот, а в состав нуклеиновой кислоты - только 4 разных нуклеотида (А, Г, Ц, Т), последовательность нуклеотидов однозначно определяющая каждую аминокислоту, должна содержать не менее 3-х оснований, т.к. если 2 триплета кодируют 1 аминокислоту 42=16, если 43=64, если 44=256. Сошлись на трех нуклеотидах, назвали группу из них, определяющую положение 1 аминокислоты - триплет или кодон. Долгое время эту гипотезу не удавалось проверить, первые данные подтверждающие это были опубликованы в 1961 г Криком. Он произвел тонкий генетический анализ сегмента в одном из генов фага Т4. Взаимодействие красителя акридина с ДНК бактериофага приводит к структурным изменениям в различных участках молекулы ДНК; каждое из этих изменений таково, что в ходе репликации и транскрипции все происходит так, как будто в цепь включено одно лишнее основание "вставка" или, наоборот, одно основание удалено из цепи "делеция". При многократной обработке акридитом можно получить много таких вставок (+) или "делеций" (-) по одной или по нескольку в различных сочетаниях.
ДИКИЙ ТИП
АЦТ. АЦ[Т]. АЦТ. АЦТ. АЦТ. АЦТ. АЦТ. АЦТ. и т.д. (-)
акридин (делеция) 1-ая
МУТАНТНЫЙ ТИП
АЦТ. АЦА. Ц[Т]А. ЦТА. ЦТА. ЦТА. ЦТА. ЦТА. и т.д. (-)
акридин (делеция) 2-ая
МУТАНТНЫЙ ТИП
АЦТ. АЦА. ЦАЦ. [Т]АЦ. ТАЦ. ТАЦ. ТАЦ. ТАЦ. и т.д. (-) (-)
акридин (делеция) 3-ая
ДИКИЙ ТИП
АЦТ. АЦА. ЦАЦ. АЦТ. АЦТ. АЦТ. АЦТ. АЦТ. АЦТ.
измененная последовательность То же самое происходит и при вставках - при одной или 2-х модификациях одного знака + или - фаг ведет себя как мутант, однако 3 вставки или 3 делеции, а также сочетание 1 вставки и одной делеции приводит к восстановлению свойств фага. Такой результат при 3 близкородственных вставках или делециях указывал на то, что код должен состоять из 3 букв, либо из числа кратного трем, т.к. еще не было известно какому числу нуклеотидрв соответствует одна вставка или одна делеция. В 1964 г. Ниренберг и Ледер разработали простой метод, позволивший прямо доказать 3-х буквенную структуру кода. Метод состоит в фильтровании на нитроцеллюлозном диске смеси, состоящей из рибосом, синтетических олигонуклеотидов различной длины от 2до 5-10, они использовались в качестве мРНК и различных аминоацил-т-РНК, каждая из которых несет свою аминокислоту (20 аминокислот - соответствует 20 различным тРНК). Комплекс олигонуклеотид-рибосома-аминоацил-тРНК задерживается на фильтре, а свободно? проходят через него. С помощью олигонуклеотидов, содержащих различное число остатков уридиловой кислоты У-У - ди,У-У-У - три, У-У-У-У -тетра, У-У-У-У-У -пента, было покозано, что связывается только фен-тРНК и происходит это только в том случае, если олиго-У содержит не менее трех оснований. Ниренберг и его сотрудники синтезировали все 64 возможных триплета и с помощью описанного метода не только подтвердии 3-х буквенную структуру кода для всех аминокислот, но и определили состав различных триплетов, соответствующих каждой аминокислоте. Корниа и сотрудники (1964) готовили искусственно полирибонуклеотиды и, используя их как матрицу, синтезировали полипептидную цепь, где потом устанавливали количество и качество аминокислот.
ЛИЗ ГЛУ ААГААГААГ............. АРГ В зависимости с чего начинали считывание получали гомопептид полиЛИЗ, ГЛУ или АРГ.
Если брали матрицы из 2-х нуклеотидов ЦУЦУЦУЦУЦУЦУЦУЦУЦУЦУ и т.д. если бы из 4-х - гомопептид, то получалась цепь, состоящая из 2-х аминокислот
ВЫРОЖДЕННОСТЬ.
На 20 различных аминокислот, участвующих в образовании белков, приходится 64 возможных кодона. Означает ли это, что несколько кодонов могут определять одну и ту же аминокислоту, т.е. является ли код вырожденным? После тех опытов, которые уже описаны получено множество подтверждений вырожденности кода. Из 64 триплетов 61 кодируют аминокислоты и только 3 остальных выполняют функцию сигнала о конце считывания информации. Различные аминокислоты кодируются различным количеством триплетов - метионин-1, лейцин-6, большинство от 2 до 4. Вырожденность имеет большое биологическое значение, позволяя противостоять губительному действию мутаций. В самом деле, если бы код не был вырожденным (20 аминокислот - 20 смысловых триплетов и 41 - бессмысловой), то в 2 случаях из 3-х изменение одного основания неизбежно приводило бы к остановке синтеза пептидной цепи, в случае вырожденности кода модификация одного основания в большинстве ведет к замене 1 аминокислоты на другую и синтез пептида продолжается. Наконец, если все-таки заменилась аминокислота, она может быть взаимозаменяемой или же не входить в активный центр белка, т.е. не теряется биологическая активность данного белка.Большинство синонимов (триплеты, кодирующие одну аминокислоту) отличаются по последнему нуклеотиду.
УНИВЕРСАЛЬНОСТЬ КОДА.
Если любой триплет кодирует одну и ту же аминокислоту у всех живых существ, то код является универсальным. Вопрос разрешен практически: полиУ одинаково стимулирует включение включение ФЕН in vitro в присутствии рибосом и F ка бактериального так и животного происхождения (полиЦ - ПРО, полиА - ЛИЗ). Ф??, Эренштейн и Лимпри синтезировали Нb in vitro, используя рибосомы и м-РНК кролика и тРНК и аминоацил-тРНК-синтазы из E.coli - продукт (Hb) идентичен был кроличьему. Это все подтверждает общее происхождение генетического кода живых систем, происходящих из одной и той же клеточной системы. 3,1млрд. лет Возникновение жизни из живой материи клетка многок2млн.лет леточные организмы Homo sapiens.
ПОСЛЕДОВАТЕЛЬНОСТЬ КОДА. Считывание происходит со строго определенной точки (сдвиг
ТРАНСЛЯЦИЯ (синтез белка)
I э. - подготовительный - иннициация и образование аминоацил-тРНК. II э. - собственно трансляция. III э.- пострибосомная трансформация.
I этап - на первой стадии белкового синтеза 20 аминокислот активируются путем присоединения через сложноэфирную связь к тРНК, этот процесс катализирует специфический по отношению к каждой аминокислоте и каждой тРНК аминоацил-тРНК-синтазой поэтому настолько специфично различают природные аминокислоты?, что возможность ошибки в условиях внутри клетки много меньше 1 на 104 (10 тыс.) это очень важно, т.к. в дальнейшем аминоацил-тРНК распознается не по аминокислоте, а по кодону. Дальнейшие процессы протекают уже в рибосомах. У бактерий структура рибосом исследована подробно, константа седиментации 70 S, в определенных условиях диссоциирует на 2 субъединицы 50 S и 30 S, каждая из которых содержит 60-70%-РНК-компонентаи и до 50 различных белков(30-40%), некоторые белки выполняют каталитические функции, составной частью 50 S -субъединицы является пептидилтрансфераза, кроме этого выделяют 2 активных участка П(пептидильный) и А (аминоацильный). После образования амиоацил-т-РНК и прихода мРНК из ядра в цитоплазму начинается иннициация путем образования иннициирующего комплекса из м-РНК, 30 S субъединицы рРНК и иннициирующей аминоацил-т-РНК, несущей на себе N-формилметионин (сейчас доказано, что у большинства бактерий синтез почти всех белков начинается с аминокислоты метионина, недаром следовательно предусмотрено, что МЕТ кодируется 1 триплетом) и следоватедьно все матричные РНК начинаются с кодона, кодирующего МЕТ). Этот комплекс присоединяет к себе при участии нескольких белковых факторов иннициации (F) и ГТФ субъединицы 50 S и рибосома готова ко второму этапу.
II. Собственно трансляция
а) присоединение в аминоацильном участке аминоацил-т-РНК (кодон-антикодон -Н2-связь методом проб и ошибок) б) образование пептидной связи (пептидилтрансферазная реакция), в П участке - не нагруженная т-РНК, в А - т-РНК с дипептидом в) изменение конформации рибосом, за счет гидролиза ГТФ - транслокация.
И все повторяется сначала до тех пор пока в А один из бессмысленных терминирующих кодонов - это сигнал об окончании считывания м-РНК - терминация полипептидной цепи - происходит разделение компонентов на исходный состав, участвуют белковые факторы терминации R. Обычно 1 мРНК транслирует несколько рибосом (полирибосом)
III этап - пострибосомные трансформации
После снятия с рибосом полипетидная цепь подвергаетсянекоторым изменениям (пострибосомные или посттрансляционные модификации): а) фрагментация (часто при этом биологическая активность образуется?) б) фосфорилирование (иногда свойства меняются) в) гидроксилирование (ПРО
ОБМЕН НУКЛЕОТИДОВ. МАТРИЧНЫЕ БИОСИНТЕЗЫ.
Переваривание начинается в желудке под влиянием H+ и большой концентрации солей - происходит распад на белковый и нуклеотидный компоненты. Протеины перевариваются как и все белки, нуклеиновые кислоты в кишечнике распадаются до нуклеотидов, полинуклеотидов, нуклеозидов - всасывание и использование в виде блоков (Ф-гидролазы и фосфатазы). БИОСИНТЕЗ НУКЛЕОТИДОВ.
Для синтеза пуриновых оснований (А, Г) - испльзуются: (сложный процесс, по числу промежуточных соединений и сложности не уступает гликолизу) Для синтеза пиримидиновых оснований (Ц, Т, У) используются: Углеводы - риб-5-ф, дезокси-риб-5-ф. Поступают с пищей, Фн - всегда поступает с пищей. Пуриновые (А,Г) и пиримидиновые (Ц,Т,У) основания несут генетическую информацию, сахарные и фосфатные группы выполняют структурную роль. Функция генов - кодирование синтезируемых в клетке белков. В норме поток информации в клетке идет: ДНК РНК белок. Функция ДНК - хранение записи генетической информации для всех белков и РНК, регуляция биосинтеза компонентов клетки, обеспечение индивидуальности. Функция РНК - перевод информации с языка нуклеотидов на язык аминокислот + обеспечение этого процесса.
КАТАБОЛИЗМ НУКЛЕОТИДОВ.
Распад в тканях под влиянием ДНК- и РНК-аз до нуклеотидов. Пиримидиновые основания при полном катаболизме дают CO2 и NH3 (мочевину). Пуриновые основания - мочевую кислоту (в основном в печени).
ПОДАГРА характеризуется артритом и избытком мочевой кислоты в крови (гиперуринемия образуется насыщенный раствор, который выпадает в осадок. Воспалительные изменения суставов, а также сопровождающие это заболевание поражения почек обусловлены осаждением в тканях кристаллов мононатриевой соли мочевой кислоты. Со временем отложения уротата натрия превращаются в видимые простым глазом узлы, камни в мочевыводящих путях. Причины гиперуринемии - алиментарная, нарушение выведения (заболевания почек), злоупотребление алкоголем, отравление солями тяжелых металлов, гентические факторы (нарушение механизмов повторного использования пуринов, активизация синтеза пуринов).
|
||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 508; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.28.200 (0.016 с.) |