Расчет и изготовление моделей обмоток якоря машин постоянного тока. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Расчет и изготовление моделей обмоток якоря машин постоянного тока.



(В.И. Мельников)

Цель работы – ознакомление с устройством и основными элементами обмоток. Для чего используется деревянная модель якоря.

Программа работы

1. Рассчитать шаг обмотки заданного типа.

2. Проверить условия симметрии обмотки.

3. Составить схему обмотки с расстановкой полюсов и щеток.

Выполнение работы

Описание модели якоря

Обмотка наматывается шпагатом на деревянной модели барабанного якоря. На модели имеются пазы и коллекторные пластины. На каждой пластине имеется гвоздь, на котором закрепляется шпагат, условно изображающий провод.

Если наматывается модель однократно замкнутой обмотки, то она может быть изготовлена из одного куска шпагата, т.е. обойдя все пазы и коллекторные пластины, мы приходим к исходной пластине, с которой была начата обмотка, т.е. обмотка всегда должна быть замкнута сама на себя.

Многократно замкнутая обмотка потребует столько кусков шпагата, какова кратность обмотки, т.к. двух или трехкратно замкнутые обмотки представляют собою соответственно две или три независимых однократно замкнутых обмоток соединенных между собой при помощи щеток (щетки должны как минимум 2 – 3 коллекторные пластины). Обмотки с большей кратностью практического применения не нашли.

Основные конструктивные элементы обмоток

Активным проводником называется проводник, который при вращении якоря пересекает магнитный поток и в котором индуктируется переменная ЭДС.

Витком обмотки называются два последовательно соединенных активных проводника, охватывающих своим контуром активный магнитный поток одного полюса.

Несколько последовательно соединенных витков образуют собою секцию. Секции бываютодновитковые и многовитковые. При изготовлении обмотки на макете используют только одновитковые секции, т.к. к одной коллекторной пластине присоединяется начало одной секции и конец другой то, очевидно, что число коллекторных пластин () равно числу секций () т.е.

,

где - число проводников обмотки якоря;

- число витков в секции.

Несколько секций, соединенных общей изоляцией от корпуса и расположенные в двух пазах образуют катушку.

В процессе изготовления модели обмотки необходимо следить, чтобы секции были расположены симметрично относительно коллекторных пластин к которым они присоединяются (см. рис.)

На макете должны быть правильно расставлены щетки с учетом формы секции и числом параллельных ветвей.

Параллельной ветвью называется часть обмотки, расположенная при данном положении якоря между двумя смежными щетками противоположной полярности.

Исходные данные для изготовления модели обмотки

Прежде чем приступить к изготовлению обмотки, следует её рассчитать используя данные полученные у преподавателя.

Для расчета необходимы следующие данные:

1. Тип обмотки (простая петлевая, простая волновая, сложная петлевая, сложная волновая);

2. Число полюсов машины ();

3. Число пазов () и коллекторных пластин() (определяется на модели якоря);

4. Определить укорочение шага обмотки;

5. Проверить условия симметрии обмотки на данной модели.

Порядок расчета обмоток

Расчет обмотки якоря на макете заключается в основном в определении её шагов, которые указаны на схемах обмотки (рис.).

Первым частичным шагом () называется расстояние между сторонами одной секции по окружности якоря, т.е. это фактически и есть ширина секции. Она близка к ширине полюсного деления, которое определяет длину дуги окружности якоря между геометрическими нейтралями т.е. линиями, проходящими по середине между двумя соседними полюсами

,

где - диаметр якоря (модели).

При изготовлении обмотки полюсное деление определяется не в единицах длины окружности якоря, а числом пазов якоря.

.

Шаги обмотки измеряются числом элементарных пазов.

Элементарным пазом () называется паз с двумя активными сторонами секций (по одной в верхнем и нижнем слоях).

Если реальный паз имеет несколько активных сторон, то он может быть разделен на соответствующее количество элементарных пазов. На рис. изображен паз, состоящий из трех элементарных пазов.

Число элементарных пазов на якоре равно числу секций и числу коллекторных пластин.

.

Для модели якоря имеем . В дальнейшем все формулы для расчета шагов даны в элементарных пазах. Следовательно, первый частичный шаг по якорю, независимо от типа обмотки определяется как

где - укорочение или удлинение шага.

Обычно «в» принимается ближайшим целым числом, которое необходимо вычесть из числа секций S, чтобы шаг выразился целым числом. Обмотка, в которой первый частичный шаг равен полюсному делению, называется обмоткой с диаметральным шагом.

Если первый частичный шаг меньше полюсного деления, мы имеем обмотку с укороченным шагом. При укорочении шага обмотки несколько снижается длина вылета лобовых частей и общая длина секции, что приводит к уменьшению расхода меди, поэтому чаще всего обмотки выполняются с укороченным шагом. Кроме того, укорочение шага благоприятно влияет и на коммутацию машины.

Обмотки с удлиненным шагом практически обычно не применяются.

Вторым частичным шагом () называется расстояние между второй активной стороной одной секции и первой активной стороной следующей секции.

Результирующим шагом () называется расстояние между первыми сторонами двух следующих друг за другом по обходу обмотки секций.

Шагом по коллектору () называется число коллекторных пластин, расположенных между началом и концом одной секции.

Проверка условия симметрии обмоток

Основное требование, которому должна удовлетворять обмотка состоит в том, чтобы ЭДС параллельных ветвей её при любом положении якоря были равны. Нарушение этого условия приводит к появлению в обмотке якоря тока даже вхолостую. Этот ток, вызванный разностью ЭДС параллельных ветвей обмотки якоря, называется уравнительным током. Он увеличивает плотность тока под щетками и в отдельных случаях исключает возможность нормальной эксплуатации машины из–за сильного перегрева обмотки якоря и искрения на коллекторе.

Чтобы устранить возможность появления уравнительного тока и добиться равенства ЭДС параллельных ветвей обмотки якоря, необходимо соблюдать определенные условия при выборе числа пазов Z и числа коллекторных пластин К обмотки якоря. Эти условия называют условиями симметрии обмотки якоря, состоят они в следующем:

1. Число проводников во всех пазах должно быть одинаково, т.е.

должно равняться целому числу, где - число проводников в пазу

N – общее число проводников обмотки якоря.

2. Каждая пара параллельных ветвей должна содержать одинаковое число пазов, т.е. целое число.

3. Каждая пара параллельных ветвей должна содержать одинаковое число секций, т.е. целое число.

4. Каждой стороне секций, принадлежащей одной паре параллельных ветвей, должны соответствовать секционные стороны других пар параллельных ветвей, расположенных в одинаковых с первыми секционными сторонами магнитных условиях. Для этого необходимо чтобы

целое число.

Очевидно, что модель якоря не позволяет изменять число пазов и коллекторных пластин при изменении числа полюсов и типа обмотки. В связи с этим определенная часть схем обмоток выполненных студентами на модели будут несимметричными и потребуют наличия уравнительных соединений I – го и II – го рода. Необходимо отметить об этом в выводах по работе.

Простая петлевая обмотка

Основными особенностями простой петлевой обмотки (рис.2) является следующее:

1. Шаг по коллектору и результирующий шаг равны единице, т.е. начало и конец секции присоединяются к соседним коллекторным пластинам.

2. Результирующий шаг равен разности частичных шагов

.

3. Число параллельных ветвей обмотки равно числу полюсов машины (рис.2)

.

Порядок изготовления модели простой петлевой обмотки следующий: рассчитав шаги, закрепляют конец шпагата на одной из коллекторных пластин, укладывают виток в пазы симметрично относительно пластин, к которым он присоединен, и приходят к соседней пластине, расположенной справа от исходной.

В первом случае обмотка называется правоходовой или неперекрещивающейся, во втором случае – левоходовой или перекрещивающейся.

Первая дает некоторую экономию меди по сравнению со второй, поэтому она применяется чаще.

Предварительно следует мелом занумеровать все коллекторные пластины и пазы. Рекомендуется нумеровать пазы так, чтобы номер паза совпадал с номером той коллекторной пластины, к которой присоединяется проводник, уложенный в первый слой данного паза (см. рис.2).Если в каждый слой паза укладывается несколько секционных сторон (число пазов больше числа коллекторных пластин), то номер паза должен соответствовать номеру коллекторной пластины, к которой присоединяется первый из проводников, уложенных в паз.

Закрепив шпагат, делают следующий виток. Располагая его рядом с первым и так далее. При правильной укладке обмотки все пазы и коллекторные пластины должны быть закрыты и конец обмотки должен подойти к исходной пластине.

Сложная петлевая обмотка

Сложная петлевая обмотка отличается от простой тем, что ее шаг по коллектору и результирующий шаг равен не единице, а целому числу «m», которое обычно принимается равным двум, реже трем.

Если и числа взаимно простые, мы получим однократно – замкнутую обмотку, т.е. совершив «m» обходов по якорю, возвратимся к исходной пластине.

Если делиться без остатка на , мы получим на якоре «m» независимых обмоток, т.е. m – кратно замкнутую обмотку.

Сложная петлевая обмотка имеет параллельных ветвей. Порядок выполнения модели этой обмотки тот же, что и для простой петлевой обмотки за исключением значении шагов по коллектору и по пазам.

Простая волновая обмотка

Основными особенностями простой волновой обмотки являются:

1. Расстояние между соседними по обходу обмотки секциями приблизительно равно двойному полюсному делению.

2. При одном обходе якоря мы укладываем на нем столько соединенных последовательно секций, сколько машина имеет пар полюсов. Каждый шаг содержит - коллекторных пластин.

После одного обхода мы либо не доходим до исходной пластины на одну пластину (неперекрещивающаяся обмотка), либо подходим на одну пластину (перекрещивающаяся обмотка).

3. Результирующий шаг и шаг по коллектору вычисляют по следующей формуле: .

Если вычисленный по этой формуле шаг является дробным числом, в обмотке получаются «мертвые секции», т.е. секции, не присоединенные к коллектору.

4. Результирующий шаг волновой обмотки равен сумме частичных шагов

.

5. Независимо от числа полюсов машины простая волновая обмотка состоит из двух параллельных ветвей.

Волновая обмотка может быть выполнена только для многополюсной машины (с числом полюсов 4 и больше). На рис.3 представлена часть схемы простой волновой обмотки 4 – х полюсной машины, число коллекторных пластин которой равно К.

Перед укладкой обмотки следует пронумеровать коллекторные пластины и пазы, придерживаясь принципа, изложенного при изготовлении петлевой обмотки.

Порядок укладки волновой обмотки может быть принят следующий:

1. Конец шпагата закрепляют на одной из коллекторных пластин и укладывают виток в пазы так, чтобы первая его сторона легла в паз, отмеченный тем же номером, что исходная пластина, а вторая сторона отстояла от первой на расстояние первичного шага , выраженного в элементарных пазах. Конец витка закрепляется на коллекторной пластине, отстоящей от исходной пластины на расстоянии, равном шагу по коллектору , выраженному числом коллекторных пластин.

2. Следующая секция укладывается аналогичным образом. После одного обхода по якорю, мы должны попасть на пластину, расположенную рядом с исходной. Это может служить критерием правильности расчета шагов.

3. После заполнения всех пазов и коллекторных пластин обмотка должна замкнуться, т.е. мы должны придти к исходной коллекторной пластине.

 

 

Сложная волновая обмотка

В сложной волновой обмотке после одного обхода мы приходим к пластине, отстоящей от исходной на «m» делений. Кратность обмотки «m» обычно принимается равной двум, реже трем. В этом случае мы получим «m» обмоток, из которых каждая представляет собой простую волновую обмотку и имеет одну пару параллельных ветвей.

В зависимости от соотношения между числами К и можно получить однократно – замкнутую или «m» - кратно – замкнутую обмотки.

Если К делится на без остатка, получим на якоре «m» электрически независимых друг от друга обмоток, соединенных щетками параллельно.

Если К и числа взаимно простые, получим однократно – замкнутую обмотку. Последняя не удовлетворяет условиям симметрии обмоток и поэтому практически не применяется.

Порядок изготовления модели этой обмотки тот же, что и для предыдущих систем, за исключением того, что после одного обхода по якорю попадаем на пластину, отстоящую от исходной на расстоянии, равном кратности обмотки.

Содержание отчета

 

1. Расчет шагов заданной обмотки.

2. Полные схемы выполненных макетов.

3. Выводы по выполнению условия симметрии обмотки.

Развернутая схема обмотки выполняется на миллиметровой бумаге. На ней следует произвести расстановку полюсов, щеток с указанием полярности и направления индуктированной ЭДС в проводниках. Выделить разными цветами параллельные ветви, указать размерными стрелками шаги обмотки.

Вопросы для самоконтроля

1. Что называют активными сторонами, лобовыми частями, шагами обмотки, полюсным делением?

2. Что такое диаметральный, укороченный и удлиненный шаг обмотки?

3. Что называется секцией в обмотке якоря коллекторной машины и каково соотношение между числом коллекторных пластин и числом секций?

4. Что такое элементарный паз обмотки якоря коллекторной машины и каково соотношение между количеством элементарных пазов, реальных пазов и коллекторных пластин?

5. Что представляют собой первый и второй частичные шаги, а также результирующий шаг и шаг по коллектору в обмотке якорей коллекторных машин?

6. Какие типы якорных обмоток коллекторных машин Вы знаете?

7. Чем отличается от простой петлевой сложная петлевая обмотка, в каких случаях она применяется и каковы её особенности?

8. Расскажите о простой и сложной волновых обмотках.

9. Каковы условия симметрии якорных обмоток коллекторных машин.

10. Для чего нужны уравнительные соединения?

 

Лабораторная работа № 9

 



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 893; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.19.31.73 (0.045 с.)