Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Принцип действия и устройство электрических машин постоянного токаСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
По роду тока все современные электрические машины делятся на машины постоянного и переменного тока. Все современные электрические машины работают на основе явлений электромагнитной индукции. Постоянным называется ток, протекающий по проводнику только в одном направлении. Получение постоянного тока может быть двояким: от генераторов постоянного тока или из переменного тока и путем его выпрямления при помощи специальных устройств — выпрямителей, преобразующих переменный ток в постоянный. Простейший генератор постоянного тока (рис. 164, а и б) имеет полюсы электромагнита N и S, между которыми вращается виток проволоки в виде рамки, концы которой припаяны к полукольцам А и В, вращающимся вместе с витком. Полукольца А и Б изолированы между собой и от вала, и представляют собой в простейшем виде коллектор, служащий для выпрямления тока во внешней цепи. На полукольца опираются неподвижные щетки / и //, по которым ток с полуколец А и Б направляется во внешнюю цепь. При вращении в магнитном поле рамки в ней будет индуктироваться переменная по величине и направлению электродвижущая сила. Как было рассмотрено ранее, эта э. д. с. изменяется по синусоиде и зависит от положения, занимаемого проводниками а и б в магнитном поле. Направление э. д. с, индуктируемой в каждый данный момент в витке, определяется по правилу правой руки. В те моменты, когда ток в витке меняет свое направление, полукольца меняют щетки, поэтому во внешней цепи ток будет иметь все время одно и то же направление, но будет меняться по значению. График изменения э. д. с. в витке можно изобразить кривой, показанной на схеме в (рис. 164), а график изменения тока во внешней цепи, соединенной с генератором, будет иметь вид, как на схеме г (рис. 164). Как показывает-последний график, э. д. с. во внешней цепи за полный оборот рамки не меняется по направлению, а меняется по значению от пуля до 'максимума, снова до нуля и т. д. Поэтому э. д. с. в таком виде имеет большую 'пульсацию, и ток, протекающий по замкнутому контуру, носит название пульсирующего. Чтобы «сгладить» пульсацию, в генераторах устанавливают очень много витков, концы которых припаивают к коллекторным пластинам. При этом витки оказываются сдвинутыми относительно друг друга на некоторый угол н при вращении всех витков пульсация уменьшается.\ В этом случае ток, вырабатываемый генератором, будет практически постоянным как по направлению, так и по значению. Обычно в генераторах бывает такое количество витков обмоток и коллекторных пластин, что получаемая на щетках э. д. с, имеет совершенно незначительную пульсацию (1 % среднего значения э. д. с), и потому ее значение считается постоянным. Основные элементы генераторов и двигателей постоянного тока конструктивно одни и те же. На рис. 165 показаны главные части и компоновка генератора постоянного тока. Генератор состоит из следующих основных частей: станины с закрепленными полюсами-электромагнитами, якоря с обмоткой п коллектором, токоснимающего устройства (щеткодержатели, щетки, траверсы), переднего и заднего подшипниковых щитов. Станины у современных электрических машин отливаются из стали и в зависимости от типа электрической машины выполняются различной формы (прямоугольные, квадратные, восьмигранные, круглые и т. д.). К станине крепится магнитная система (создает магнитный поток), состоящая из полюсных сердечников с наконечниками (рис. 166), на которых находятся обмотки возбуждения из изолированной медной проволоки. Полюсные сердечники с полюсными наконечниками образуют полюсы электромагнита, служащие для создания магнитного поля. Полюс генератора, как и всякий электромагнит, состоит из сердечника и надетой на пего катушки, по которой проходит электрический ток, называемый током возбуждения. Этот ток создает магнитный поток. Катушки возбуждения составляют обмотку возбуждения машины, названную так потому, что при прохождении по ней тока она создает (возбуждает) магнитное поле генератора. Количество полюсов у генератора, как правило, четное и составляет, 2, 4, 6 и более. При этом северные и южные полюсы чередуются между собой. Сердечники полюсов снабжаются полюсными наконечниками (башмаками) для улучшения распределения линий магнитного поля машины. Полюсные сердечники, как и полюсные наконечники, собирают из отдельных листов (пластин) электротехнической стали толщиной 0,5 мм. Сердечники полюсов изготовляют отдельно от станины и крепят к ней, как это показано на рис. 166. Якорь — вращающаяся часть машины — служит для несения обмотки, в которой индуктируется переменная э. д. с; он состоит из сердечника и обмотки. В современных машинах сердечник якоря собирается из листов электротехнической стали толщиной 0,35—0,5 мм, изолированных друг от друга специальной тонкой бумагой или покрытых изолирующим лаком. Отдельные листы сердечника якоря штампуются такой формы, чтобы после сборки их на наружной поверхности якоря образовались пазы, в которые затем укладывают секции обмоток якоря из изолированной медной проволоки. Секции обмоток соединяют между собой в определенной последовательности. Набранный таким образом якорь надевают на стальной вал машины, на котором его закрепляют шпонкой. На одном валу с якорем насажены коллектор и вентилятор. Коллектор представляет собой полый барабан, собранный из медных пластин, изолированных друг от друга и от вала машины. Количество пластин равно количеству секций якоря, так как к каждой коллекторной пластине припаиваются начало одной и конец другой секции. Пластины изготовляют из твердотянутой меди соответствующего профиля и изолируют друг от друга прокладками из миканита (склеенные под давлением листочки слюды). Для соединения коллекторных пластин с концами обмотки в углу каждой пластины вырезается углубление (шлиц), в которое вводят (вбивают) концы секций и припаивают их. Коллектор является одной из наиболее ответственных частей электрической машины. Над коллектором укрепляется траверса со щеткодержателями. Щетки вставляют в гнезда щеткодержателей; они прижимаются к коллектору пружинами, натяжение которых можно регулировать. В современных электрических машинах применяют угольные, медно-графитные и графитные щетки. Якорь с коллектором вращается в подшипниках, находящихся в подшипниковых щитах. Последние крепятся с боков болтами к станине. Между якорем и башмаками полюсных сердечников имеется небольшой зазор, называемый междужелезным пространством. На корпусе машины обычно устанавливается выводная коробка, в которой имеются изолированные друг от друга и от корпуса машины болтовые зажимы — выводы, служащие для соединения машины с цепью. Основные неподвижные части электрической машины образуют статор, вращающиеся-ротор. В машинах постоянного тока якорь является ротором, а магнитная система (иногда называется индуктором) — статором. ГЕНЕРАТОРЫ ПОСТОЯННОГО ТОКА Для получения электрического тока во внешней цепи генератора необходимо, чтобы между его полюсами был магнитный поток и якорь генератора вращался каким-либо двигателем. Магнитный поток в генераторе постоянного тока (в его магнитной системе) создается три пропускании тока через катушки возбуждения (обмотки полюсных сердечников). В зависимости от способа питания обмоток возбуждения генераторы делятся на генераторы независимого возбуждения и генераторы с самовозбуждение м. В первых питание обмотки возбуждения производится от постороннего источника тока, а в генераторах с самовозбуждением питание обмотки возбуждения производится током самого генератора. Поэтому в первом случае цепь возбуждения и цепь якоря электрической связи не имеют, а во втором случае цепи возбуждения и якоря соединены между собой. При этом в зависимости от схемы соединения обмотки возбуждения и якоря генераторы с самовозбуждением делятся на три группы: генераторы параллельного возбуждения, или шунтовые; генераторы последовательного возбуждения, или сериесные; генераторы смешанного возбуждения, или компаундные. На судах морского флота генераторы с одной последовательной обмоткой возбуждения не применяются, так как у них ток возбуждения, а следовательно, и напряжение на зажимах в сильной степени зависят от режима нагрузки генератора. В генераторах с параллельной обмоткой возбуждения с увеличением режима нагрузки во внешней цепи напряжение на зажимах генератора снижается, что является большим недостатком этих генераторов. У генераторов смешанного возбуждения полюсные сердечники имеют по две обмотки: одна включена последовательно с обмоткой якоря, а вторая — параллельно. При такой схеме включения устраняются недостатки, присущие генераторам последовательного и параллельного возбуждения. На судах морского флота устанавливают в основном генераторы со смешанным возбуждением, так как у этих генераторов обеспечивается постоянное напряжение на зажимах при изменении нагрузки. ДВИГАТЕЛИ ПОСТОЯННОГО ТОКА В двигателе постоянного тока магнитные поля создаются полюсами обмотки возбуждения и обмоткой якоря, по которым пропускается ток. При пропускании через них постоянного тока якорь машины придет во вращение. Направление вращения якоря определяется правилом левой руки. Если изменить направление тока в якоре или в обмотке возбуждения, то направление вращения двигателя также изменится. При работе электродвигателя его якорь с обмоткой, вращаясь в магнитном поле, создаваемом магнитами полюсов, пересекает силовые магнитные линии магнитного потока полюсов и, следовательно, согласно закону электромагнитной индукции в обмотке якоря индуктируется э. д. с. Направление этой э. д. с. противоположно направлению тока, текущего в обмотке якоря (определяется по правилу правой руки), (Ввиду чего она называется обратной э. д. с, или противоэлектродвижущей силой (противо Э. Д. С.). Необходимо заметить, что во время пуска двигателя противоэлектродвижущая сила равна нулю и ток якоря может достигнуть недопустимо большого значения, так как сопротивление обмотки якоря незначительно. Поэтому в момент пуска в цепь якоря последовательно вводят дополнительный резистор — пусковой реостат. С началом вращения якоря нарастает противо э. д. с, снижающая ток в якоре, поэтому по мере раскручивания двигателя (с увеличением частоты вращения двигателя) сопротивление пускового реостата постепенно уменьшают и совсем его выключают, как только двигатель разовьет номинальную частоту вращения, так как в этом случае обмотка якоря перегрузки испытывать не будет. Электродвигатели постоянного тока, как и генераторы, в зависимости от способа включения обмоток возбуждения и якоря подразделяются на двигатели: с независимым возбуждением; с последовательным возбуждением, или сериесные; с параллельным возбуждением, или шунтовые; со смешанным возбуждением, или компаундные. На судах морского флота электродвигатели постоянного тока с последовательным возбуждением с легкой параллельной обмоткой применяются для привода палубных механизмов (брашпилей, шпилей, лебедок, кранов), где требуется большой вращающий момент при пуске. Электродвигатели постоянного тока с параллельным возбуждением применяются для привода механизмов, у которых необходимо иметь постоянную частоту вращения независимо от их нагрузки и у которых не требуется большой пусковой момент (вспомогательные механизмы и насосы, обслуживающие главные двигатели и судовые системы, станки). Электродвигатели постоянного тока со смешанным возбуждением применяются для привода механизмов, требующих большого пускового момента и сохранения постоянной частоты вращения, а также имеющих значительный маховой момент (палубные механизмы, рулевые приводы, валоповоротные устройства и др.). Конструктивно электродвигатели выполняются с горизонтальным и с вертикальным валом. По типу защиты от воздействия внешней среды электродвигатели бывают такие же, как и генераторы: открытые, защищенные, брызгозащищённые, водозащищенные, герметичные и взрывозащищённые. Управление электродвигателями постоянного тока сводится в основном к выполнению следующих операций: пуску, остановке, торможению, реверсированию и регулированию частоты вращения, Эти операции могут быть выполнены вручную, автоматически или полуавтоматически при помощи соответствующей аппаратуры управления (пусковые и регулировочные реостаты, электрические и механические тормозные устройства и др.). Частота вращения электродвигателя регулируется изменением напряжения на зажимах якоря или изменением магнитного потока, создаваемого обмоткой возбуждения, т. е. изменением силы тока возбуждения электродвигателя при помощи регулировочного реостата. Для быстрой остановки электродвигателей необходимо применять торможение. Торможение электродвигателей постоянного тока может быть механическим и электрическим. Механическое торможение осуществляется при помощи колодочных, ленточных и дисковых тормозов. Электрическое торможение может быть произведено или в виде полезного торможения, при котором двигатель обращается в генератор и возвращает электрическую энергию в цепь, или же в виде реостатного торможения. Изменить направление вращения электродвигателя постоянного тока можно двумя способами: 1) изменить направление тока в полюсных обмотках возбуждения, оставив направление тока в обмотке якоря без изменения; 2) изменить направление тока в обмотке якоря, оставив без изменения направление тока в полюсных обмотках возбуждения. Если одновременно изменить направление тока и в обмотке якоря и в обмотке возбуждения, то направление вращения двигателя не изменится.
|
||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 884; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.89.70 (0.008 с.) |