Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Регрессионный анализ в MathcadСодержание книги Поиск на нашем сайте
В MathCAD существует пять способов определения параметров эмпирической кривой (формулы): 1) Линейная регрессия: обнаружение линии, которая наилучшим образом приближается к исходным данным. 2) Параболическая регрессия: нахождение многочлена, который наилучшим образом приближается к исходным данным. 3) Многомерная параболическая регрессия: определение полиномиальной поверхности. 4) Линейная комбинация функций. 5) Приспособление произвольных функций к данным: обнаружение параметров, которые делают функциональный метод наилучшего приближения набором знаков - символов. Линейная регрессия Для проведения линейной регрессии в систему встроен ряд приведенных ниже функций: corr( VX, VY ) – возвращает скаляр – коэффициент корреляции Пирсона; intercrpt( VX, VY ) – возвращает значение параметра а (смещение линии регрессии по вертикали); slope( VX, VY ) – возвращает значение параметра b (наклона линии регрессии). Эти функции возвращают угловые коэффициенты линии с наименьшей площадью отклонений. Если Вы размещаете ваши значения x в вектор Vx, а значения y в Vy, получается линия: Обозначения: Vx - вектор реальных значений данных в восходящем порядке для функции отрезка, отсекаемого на координатной оси. (Значения в Vx соответствуют значениям x; Vy - вектор реальных значений данных). Они соответствуют значениям y, число элементов то же самое, что и у Vx. Параболическая регрессия Введена в MathCAD и функция для обеспечения полиномиальной (параболической)регрессии при произвольной степени полинома регрессии regress( VX,VY,n ). Она возвращает вектор VS, запрашиваемый функцией interp (VS,VX,VY,x), содержащий коэффициенты многочлена п-й степени, который наилучшим образом приближает “облако” точек с координатами, хранящимися в векторах VX и VY. На практике не рекомендуется делать степень аппроксимирующего полинома выше четвертой - шестой, поскольку погрешности реализации регрессии сильно возрастают. Функция regress создает единственный приближающий полином, коэффициенты которого вычисляются по всей совокупности заданных точек, т.е. глобально. Иногда полезна другая функция полиномиальной регрессии, дающая локальные приближения отрезками полиномов второй степени,
Многомерная параболическая регрессия Mathcad позволяет выполнять также многомерную регрессию, самый типичный случай которой - приближение трехмерных поверхностей. Их можно характеризовать массивом значений высот z, соответствующих двумерному массиву Мху координат точек (х, у) на горизонтальной плоскости. Для этого используются уже описанные функции в несколько иной форме: regress( Mxy,Vz,n) - возвращает вектор, запрашиваемый функцией; interp ( VS,Mxy,Vz,V ) для вычисления многочлена n-v. степени, который наилучшим образом приближает точки множества Мху и Vz. Мху - матрица т-2, содержащая координаты х и у. Vz - т -мерный вектор, содержащий z-координат, соответствующих т точкам, указанным в Мху; loes( Mxy,Vz,span ) - аналогична loes( VX,VY,span), но в многомерном случае; interp( VS, Mxy,Vz,V ) - возвращает значение z по заданным векторам VS (создается функциями regress или loess) и Мху, Vz и V (вектор координат х и у заданной точки, для которой находится z). Линейная комбинация функций При выполнении в Mathcad линейной регрессии общего вида заданная совокупность точек приближается функцией вида F(x, К1,К2,., Kn)= K1, F1(x)+K2 F2(x)+ +КnFn(x) Таким образом, функция регрессии является линейной комбинацией функций F1(x), F2(x),., Fn(x), причем сами эти функции могут быть нелинейными, что резко расширяет возможности такой аппроксимации и распространяет ее на нелинейные функции. Для реализации линейной регрессии общего вида используется функция linfit( VX,VY,F ). Эта функция возвращает вектор коэффициентов линейной регрессии общего вида К, при котором среднеквадратичная погрешность приближения облака исходных точек, если их координаты хранятся в векторах VX и VY, оказывается минимальной. Вектор F должен содержать функции F1(x), F2(x),, Fn(x), записанные в символьном виде. Расположение координат точек исходного массива может быть любым, но вектор VX должен содержать координаты, упорядоченные в порядке их возрастания, а вектор VY ординаты, соответствующие абсциссам в векторе VX.
|
||||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 792; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.72.181 (0.006 с.) |