Состав и актуальность курса БЖД. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Состав и актуальность курса БЖД.



Понятие о техногенной цивилизации. Конечность техногенной цивилизации

Характерные черты:

1. быстрое изменение техники и технологии благодаря систематическому применению в производстве научных знаний;

2. как результатом слияния науки и производства произошла и научно-техническая революция, существенным образом изменившие взаимоотношения человека и природы, место человека в системе производства;

3. ускоряющееся обновление той искусственно созданной человеком предметной среды, в которой непосредственно протекает его жизнедеятельность. На базе техногенной цивилизации сформировалось два типа общества— индустриальное общество и постиндустриальное общество.

 
 

 

 


Ноосфера. Устойчивое развитие. Золотой миллиард

Ноосфе́ра — сфера взаимодействия общества и природы, в границах которой разумная человеческая деятельность становится определяющим фактором развития (эта сфера обозначается также терминами «антропосфера», «биосфера»).

Ноосфера — предположительно новая, высшая стадия эволюции биосферы, становление которой связано с развитием общества, оказывающего глубокое воздействие на природные процессы.

Золотой миллиард потребляет львиную долю всех ресурсов на планете. Если хотя бы половина человечества начнёт потреблять ресурсы в таком же объёме, их очевидно не хватит.

Главным потребителем минерального сырья до конца прошлого века оставался «золотой миллиард» — приблизительно шестая часть человечества, проживающая в развитых странах.

Идея ограниченности ресурсов впервые появилась в работах Томаса Мальтуса. Он предсказывал глобальный кризис из-за того, что население растёт в геометрической прогрессии, а ресурсные отрасли — в арифметической, и должны будут в обозримом будущем исчерпаться

Классификация НС

Классификация несчастных случаев по исходу:
- легкие (трудоспособность полностью восстанавливается)
- тяжелые (приводят к инвалидности)
- групповые
- смертельные
Классификация несчастных случаев по месту происшествия:
- бытовые,
- связанные с работой
- связанные с производством.
НС связанные с производством
При выполнении трудовых обязанностей: травмы нанесенные другим лицом, острые отравления, тепловые удары, ожоги, обморожения.
При совершении каких-либо действий в интересах предприятия, хоть и без поручения администрации.
В пути на работу или с работы в служебном транспорте
На территории предприятия в течении рабочего времени, включая перерывы, подготовку к работе.
Во время проведения субботников.
В рабочее время на общественном транспорте или пешком с работником, чья деятельность связана с передвижением или к месту работы по заданию администрации.
НС связанные с работой
В пути на работу или с работы пешком
Вблизи учреждения в рабочее время и в перерыве с разрешения администрации

Расследование НC

Для расследования несчастного случая на производстве работодатель немедленно создает комиссию в составе не менее трех человек, которая возглавляется работодателем или уполномоченным им представителем. Состав комиссии утверждается приказом (распоряжением) работодателя.

Расследование обстоятельств и причин несчастного случая на производстве, который не является групповым и не относится к категории тяжелых несчастных случаев или несчастных случаев со смертельным исходом, проводится комиссией в течение трех дней.

Расследование группового несчастного случая на производстве, тяжелого несчастного случая на производстве и несчастного случая на производстве со смертельным исходом проводится комиссией в течение 15 дней.

Порядок расследования несчастных случаев на производстве, учитывающий особенности отдельных отраслей и организаций, а также формы документов, необходимых для расследования несчастных случаев на производстве, утверждаются в порядке, установленном Правительством Российской Федерации.

По каждому несчастному случаю на производстве, вызвавшему необходимость перевода работника в соответствии с медицинским заключением на другую работу, потерю трудоспособности работником на срок не менее одного дня либо его смерть, оформляется акт о несчастном случае на производстве по форме Н-1 в двух экземплярах на русском языке либо на русском языке и государственном языке субъекта Российской Федерации.

В условиях городского шума происходит постоянное напряжение органов слуха, приводящее к их утомлению, снижению остроты слуха. Под влиянием шума нарушается состояние центральной нервной системы, снижаются внимание, работоспособность, особенно умственная.

При уровнях шума свыше 60 дБ снижаются:

- объем кратковременной памяти;

- умственная работоспособность;

- реакция на различные жизненные ситуации.

Шум является одним из наиболее нетерпимых раздражителей в ночное время. Человек с трудом засыпает, часто просыпается, сон становится поверхностным и не дает хорошего отдыха. Отсутствие нормального отдыха после трудового дня приводит к тому, что естественное утомление после работы не исчезает, а постепенно переходит в хроническое переутомление, способствующее развитию заболеваний центральной нервной системы, гипертонической болезни. Постоянное действие шума может явиться причиной язвенной болезни, гастрита в результате нарушения секреторной и моторной функций желудка.

Таким образом, длительное воздействие шумов вызывает изменения функционального состояния не только со стороны органа слуха, сердечно-сосудистой системы, но и организма в целом, в первую очередь страдает центральная нервная система.

Но и абсолютная тишина угнетает человека. В полной тишине, например в сурдокамере, сразу начинают беспокоить звуки, в обычных условиях остающиеся незамеченными, - удары сердца, дыхание и даже шорох ресниц. Эти обычно неслышимые звуки в условиях абсолютной тишины воспринимаются человеком так, что могут стать причиной серьезных психических расстройств.

Установлено, что люди умственного труда, люди с развитой чувствительностью (ученые, представители творческих профессий) ощущают воздействие шума острее, чем представители других форм занятости. Поэтому с субъективной точки зрения шум можно определить как всякий нежелательный, мешающий, вредный звук.

Уровень шума в 20-30 дБ практически безвреден для человека. Это естественный шумовой фон, без которого невозможна человеческая жизнь. Звук в 130 дБ уже вызывает у человека болевое ощущение, а в 150 - становится для него непереносимым, может произойти разрыв барабанной перепонки.

Окружающие человека шумы имеют разную интенсивность: разговорная речь – 50...60 дБ А, автосирена – 100 дБ А, шум двигателя легкового автомобиля – 80 дБ А, громкая музыка – 70 дБ А, шум от движения трамвая – 70...80 дБ А, шум в обычной квартире –30...40 дБ А.

Инфразвук представляет собой механические колебания упругой среды одинаковой с шумом физической природы, но имеющие частоту меньше 20 Гц. Инфразвук в производственных условиях чаще всего возникает при работе тихоходных крупногабаритных машин и механизмов (вентиляторов, компрессоров, дизельных двигателей, электровозов, турбин, реактивных двигателей ит. д.), циклы работы которых повторяются не чаще 20 раз в секунду, при турбулентных процессах в мощных потоках газов и жидкостей, а в природе - при землетрясениях, морских бурях, извержениях вулканов. Согласно медицинским исследованиям инфразвуковые колебания вызывают у человека чувство глубокой подавленности и необъяснимого страха, слабые звуки действуют на внутреннее ухо, создавая эффект морской болезни, сильные вызывают вибрацию органов человека, нарушая их функции (сердце может даже остановиться). При колебаниях средней мощности наблюдаются внутренние расстройства органов пищеварения и мозга с самыми различными последствиями (обморок, общая слабость и т.д.). Более того, инфразвук средней силы может вызвать слепоту, а опыты французского профессора Гавро показали, что мощный инфразвук частотой 7 Гц смертелен для организма.

Гигиенические нормы ограничивают уровни звукового давления в октавных полосах со средними геометрическими частотами 2,4,8 и 16 Гц до 105дБ.

Следует отметить низкую эффективность звукоизоляции и звукопоглощения при защите от инфразвука. Поэтому мероприятия по борьбе с инфразвуком сводятся к увеличению быстроходности машин с превышением количества однотипных циклов работы.

Ультразвук - это механические колебания упругой среды, имеющие одинаковую со звуками физическую природу, но по частоте превышающие верхний порог слышимости (20 000 Гц). На производстве ультразвук применяют для дефектоскопии отливок, сварных швов, пластмасс, при измельчении твердых веществ в жидкостях, для очистки и обезжиривания деталей, гомогенизации молока, резания, сварки металла, дробления, сверления хрупких материалов, ускорения брожения при изготовлении вин, в медицине - для диагностики и лечения многих заболеваний.

Длительное воздействие ультразвука на человека вызывает быструю утомляемость, головную боль, раздражение, боль в ушах, бессонницу, а также профессиональные заболевания - парезы кистей и предплечий. Поэтому необходимо предупреждать контактное озвучивание через твердые и жидкие среды, а также ограничивать распространение ультразвука и шума в воздухе рабочей зоны.

Параметры шума.

К физическим характеристикам шума относятся - скорость распространения; частота; мощность; давление звука (звуковое давление); громкость.

Звук – это колебательное движение в материальной среде, обладающей упругостью и инерционностью, вызванное каким-либо источником.

Распространение колебательного движения в среде называется звуковой волной.

Область среды, в которой распространяются звуковые волны, называется звуковым полем. В каждой точке звукового поля при распространении звуковой волны будет наблюдаться деформация среды, т.е. зона сжатия и разряжения.

Такая деформация приведет к изменению давления в среде. Разность между атмосферным давлением и давлением в данной точке звукового поля называется звуковым давлением (Р). Звуковое давление выражается в паскалях (Па).

Сила звука может характеризоваться и количеством звуковой энергии. Средний поток звуковой энергии, проходящей в единицу времени через единицу поверхности, перпендикулярной к направлению распространения звуковой волны, называется интенсивностью звука (I). За единицу измерения интенсивности принят Вт / м2.

За единицу частоты колебаний принят герц (Гц), равный 1 колебанию в секунду.

Интенсивность звука I в свободном поле связана с звуковым давлением, Вт / м2

(2.5.1)

где Р - среднеквадратичное значение давления (Па),

рс – удельное аккустическое сопротивление среды (для воздуха - 4,44 Нс / м3, для воды – 1,4 х 106 Нс / м3).

Скорость распространения звука. Шум распространяется с гораздо меньшей скоростью, чем световые волны. Скорость звука в воздухе - примерно 330 м/с, в жидкостях и твердых телах скорость распространения шума выше, она зависит от плотности и структуры вещества.

Частота шума. Основной параметр шума - его частота (число колебаний в секунду). Единица измерения частоты - 1 герц (Гц), равный 1 колебанию звуковой волны в секунду. Человеческий слух улавливает колебания частот от 20 Гц до 20000Гц. При работе систем кондиционирования учитывают обычно спектр частот от 60 до 4000Гц. Для физических расчетов слышимая полоса частот делится на 8 групп волн. В каждой группе определена средняя частота: 62 Гц, 125 Гц, 250 Гц, 500 Гц, 1000 Гц, 2 кГц, 4 кГц и 8 кГц.

Любой шум раскладывается по группам частот, и можно найти распределение звуковой энергии по различным частотам.

Мощность звука какой-либо установки - это энергия, которая выделяется установкой в виде шума за единицу времени. Измерять силу шума в стандартных единицах мощности неудобно, так как спектр звуковых частот очень широк, и мощность звуков отличается на много порядков.

Например, сила шума при поступлении в помещение воздуха под низким давлением равна одной стомиллиардной ватта, а при взлете реактивного самолета сила шума достигает 1000 Вт.

Громкость шума. Чувствительность человека к звукам разной частоты неодинакова. Она максимальна к звукам частотой около 4 кГц, стабильна в диапазоне от 200 до 2000 Гц, и снижается при частоте менее 200 Гц (низкочастотные звуки).

Громкость шума зависит от силы звука и его частоты. Громкость звука оценивают, сравнивая ее с громкостью простого звукового сигнала частотой 1000Гц. Уровень силы звука частотой 1000Гц, столь же громкого, как измеряемый шум, называется уровнем громкости данного шума.

При малом уровне громкости человек менее чувствителен к звукам очень низких и высоких частот. При большом звуковом давлении ощущение звука перерастает в болевое ощущение. На частоте 1 кГц болевой порог соответствует давлению 20 Па и силе звука 10 Вт/м2.

Уровни параметров шума

Уровень интенсивности и уровень звукового давления, выражаемые в децибелах (дБ).

 

Li=10lg(J/J0), где J – фактическое, J0 – пороговое значение интенсивности, J0=10-12 Вm/м2 при эталонной частоте f=1000 Гц.

 

Уровень звукового давления

 

Lp=20lg(p/p0), где р0=2х10-5 Па – пороговое значение.

 

Частота шума.

Частота колебаний влияет на звуковое восприятие и определяет высоту звучания. Колебания с частотой ниже 16 Гц – инфразвук, а выше 20 000 Гц – ультразвук. С возрастом чувствительность слухового восприятия у человека снижается и верхняя граница у людей пожилого возраста может снизиться до 10 000 Гц.

Восприятие человеком звуков в зависимости от частоты меняется. На частоте 1000-4000 Гц она максимальна, ближе к инфро и ультра звуковым значениям она падает.

Физиологическая особенность человека такова, что воспринимая частотную составляющую, мы реагируем не на абсолютный, а на относительный прирост частот: увеличение частоты звука вдвое воспринимается как повышение высоты звучания на определенную величину, называемую октавой. Октава – это диапазон частот, где верхняя граница в два раза больше нижней. f2/f1=2

Весь диапазон частот, который мы слышим, разбит на октавы. Октава характеризуется среднегеометрическим показателем частоты колебаний (31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000; 16000 Гц), определяют fc=√fнхfв

В ряде случаев октава является очень широкой полосой и требуется исследование шума в более узких полосах.

Принимают понятие 1/3 октавы - это полоса частоты, у которой f2/f1=3√2, fc=f16√2

Громкость шума

Чувствительность человека к звукам разной частоты неодинакова. Она максимальна к

звукам частотой около 4 кГц, стабильна в диапазоне от 200 до 2000 Гц, и снижается при

частоте менее 200 Гц (низкочастотные звуки).

Громкость шума зависит от силы звука и его частоты. Громкость звука оценивают,

сравнивая ее с громкостью простого звукового сигнала частотой 1000Гц. Уровень силы

звука частотой 1000Гц, столь же громкого, как измераемый шум, называется уровнем

громкости данного шума. На приведенной ниже диаграмме показана зависимость силы

звука от частоты при постоянной громкости.

При малом уровне громкости человек менее чувствителен к звукам очень низких и

высоких частот. При большом звуковом давлении ощущение звука перерастает в болевое

ощущение. На чатоте 1 кГц болевой порог соответствует давлению 20 Па и силе звука 10

Вт/кв.м.

Диаграмма кривых равной громкости

На рисунке справа изображено семейство кривых равной громкости, называемых также изофонами. Они представляют собой графики стандартизированных (международный стандарт ISO 226) зависимостей уровня звукового давления от частоты при заданном уровне громкости. С помощью этой диаграммы можно определить уровень громкости чистого тона какой-либо частоты, зная уровень создаваемого им звукового давления., на

Например, если синусоидальная волна частотой 100 Гц создаёт звуковое давление уровнем 60 дБ, то, проведя прямые, соответствующие этим значениям на диаграмме ходим на их пересечении изофону, соответствующую уровню громкости 50 фон. Это значит, что данный звук имеет уровень громкости 50 фон.

Изофона «0 фон», обозначенная пунктиром, характеризует порог слышимости звуков разной частоты для нормального слуха.

Акустический расчет.

Необходимость проведения мероприятий по снижению шума определяется:

  • на действующих предприятиях на основании измерений уровней звукового давления на рабочих местах с последующим сравнением этих уровней с допустимыми по нормам Lр доп,
  • на проектируемых предприятиях – на основании проведенного акустического расчета.

Акустический расчет включает:

· выявление источников шума и определение их шумовых характеристик;

· выбор расчетных точек и определение допустимых уровней звукового давления L доп для этих точек;

· расчет ожидаемых уровней звукового давления Lр в расчетных точках;

· расчет необходимого снижения шума в расчетных точках;

· разработка строительно-акустических мероприятий для обеспечения требуемого снижения шума или по защите от шума (с расчетом).

Акустический расчет выполняется во всех расчетных точках для восьми октавных полос со среднегеометрическими частотами от 63 до 8000 Гц с точностью до десятых долей дБ. Окончательный результат округляют до целых значений.

Исходными данными для акустического расчета являются:

· геометрические размеры помещения;

· спектр шума источника (или источников) излучения;

· характеристика помещения;

· характеристика преграды;

· расстояние от центра источника (источников) до рабочей точки.

 

Выбор расчетных точек. Расчетные точки при акустических расчетах следует выбирать внутри помещений зданий и сооружений, а также на территории на рабочих местах или в зоне постоянного пребывания людей на высоте 1,2 – 1,5 м от уровня пола рабочей площадки или планировочной отметки территории.

При этом внутри помещения, в котором один источник шума или несколько источников шума с одинаковыми октавными уровнями звукового давления, следует выбирать не менее двух расчетных точек: одну на рабочем месте, расположенном в зоне отраженного звука, а другую – на рабочем месте в зоне прямого звука, создаваемого источниками шума.

Если в помещении несколько источников шума, отличающихся друг от друга по октавным уровням звукового давления на рабочих местах более чем на 10 дБ, то в зоне прямого звука следует выбирать две расчетные точки: на рабочих местах у источников с наибольшими и наименьшими уровнями звукового давления Lp в дБ.

Расчет ожидаемых уровней звукового давления Lр в расчетных точках. В зависимости от того, где находится источник шума и расчетные точки (в свободном звуковом поле или в помещении), применяют различные методики расчета:

Расчет ожидаемых октавных уровней звукового давления в помещении:

с одним источником шума;

Ожидаемые октавные уровни звукового давления Lp в дБ в расчетных точках на рабочих местах помещения, в котором находится один источник шума, определяются:

а) в зоне прямого и отраженного звука по формуле:

(3.12)

б) в зоне прямого звука по формуле:

(3.13)

в) в зоне отраженного звука по формуле:

(3.14)

где LW – октавный уровень звуковой мощности источника шума в дБ;

Ф – фактор направленности;

cэмпирический коэффициент, учитывающий влияние ближнего акустического поля и принимаемый в зависимости от отношения расстояния между акустическим центром источника и расчетной точкой r (м) к максимальному габаритному размеру источника l max (м) по графику рис. 3.8;

Примечание: Акустический центр источника шума, расположенного на полу или стене, следует принимать совпадающим с проекцией геометрического центра источника шума на горизонтальную или вертикальную плоскость.

S, м2 площадь воображаемой поверхности правильной геометрической формы, окружающей источник и проходящей через расчетную точку:

для источников шума, у которых r > 2 l max, следует принимать при расположении источников шума:

· в пространстве S= 4 p r

· на поверхности пола, стены, перекрытия S= 2 p r 2;

· в двухгранном углу, образованном ограждающими поверхностями S=p r 2;

· в трехгранном углу, образованном ограждающими поверхностями S=p r /2;

В, м2постоянная помещения, которая находится из выражения

(3.15)

где m - частотный множитель, определяемый по табл. 3.10; В1000 - постоянная помещения на среднегеометрической частоте 1000 Гц, которая рассчитывается в зависимости от объема V (м3) и типа помещения как:

·V/20 - для помещений без мебели с небольшим количеством людей (металлообрабатывающие цехи, машинные залы, испытательные стенды и т.д.);

·V/10 - для помещений с жесткой мебелью или с небольшим количеством людей и мягкой мебелью (лаборатории, кабинеты и т.д.);

·V/6 - для помещений с большим количеством людей и мягкой мебелью (рабочие помещения административных зданий, жилые комнаты и т.п.);

·V/1,5 - для помещений с звукопоглощающей облицовкой потолка и части стен;

y - коэффициент, учитывающий нарушение диффузности звукового поля в помещении, принимаемый в зависимости от отношения постоянной помещения В к площади ограждающих поверхностей S огр, которая определяется с учетом суммы площадей пола, потолка и стен помещения.

с несколькими источниками шума;

Октавные уровни звукового давления Lp в дБ в расчетных точках помещений, в которых находится несколько источников шума, рассчитываются:

а) в зоне прямого и отраженного звука по формуле

(3.16)

где LWi, Ф i, c, Si, В, y – то же, что и в (3.12, 3.13, 3.14) для i -го источника шума; m – количество источников шума, ближайших к расчетной точке (т.е. источников шума, для которых r i £ 5 r мин, где r мин – расстояние в м от расчетной точки до акустического центра ближайшего к ней источника шума); n – общее количество источников шума в помещении с учетом среднего коэффициента одновременности работы оборудования.

Если все источники шума имеют одинаковую звуковую мощность и LWi = LW, то без учета фактора направленности и искажения диффузности акустического поля в помещении упрощенно можно считать

б) в зоне отраженного звука по формуле:

изолированном от источников шума;

Источники могут размещаться в смежном помещении, а шум проникать в изолируемое помещение через ограждающие конструкции. В этом случае ожидаемый уровень в расчетной точке определяется по формуле

Lp = LW å - 10 lgBш+ 10 lg S огр.к- 10 lg Bи- R к+ 10 lg m + 6, дБ, (3)

где Bш и Bи - соответственно постоянные шумного и изолируемого помещений, R к - звукоизоляция однотипных ограждающих конструкций, через которые шум проникает в изолируемое помещение, дБ; m - число однотипных ограждающих конструкций; S огр.к- общая площадь однотипных ограждающих изолируемое помещение конструкций, м2 (например, общая площадь глухой части стены, суммарная площадь окон и т.д.).

Суммарный уровень звуковой мощности, излучаемой несколькими источниками, находящимися в шумном помещении, равен:

(3.18)

где i = 1, 2,..., n - количество источников. При наличии одного источника в шумном помещении LW å = LW.

Расчет ожидаемых октавных уровней звукового давления при распространении звука в свободном пространстве.

Методы борьбы с шумом.

Для борьбы с шумом в помещениях проводятся мероприятия как технического, так и медицинского характера. Основными из них являются:

- устранение причины шума, то есть замена шумящего оборудования, механизмов на более современное нешумящее оборудование;

- изоляция источника шума от окружающей среды (применение глушителей, экранов, звукопоглощающих строительных материалов);

- ограждение шумящих производств зонами зеленых насаждений;

- применение рациональной планировки помещений;

- использование дистанционного управления при эксплуатации шумящего оборудования и машин;

- использование средств автоматики для управления и контроля технологическими производственными процессами;

- использование индивидуальных средств защиты (беруши, наушники, ватные тампоны);

- проведение периодических медицинских осмотров с прохождением аудиометрии;

- соблюдение режима труда и отдыха;

- проведение профилактических мероприятий, направленных на восстановление здоровья.

Интенсивность звука определяется по логарифмической шкале громкости. В шкале - 140 дБ. За нулевую точку шкалы принят «порог слышимости» (слабое звуковое ощущение, едва воспринимаемое ухом, равное примерно 20 дБ), а за крайнюю точку шкалы - 140 дБ - максимальный предел громкости.

Громкость ниже 80 дБ - очень тихая; от 20 до 40 - тихая, от 40 до 60 - средняя, от 60 до 80 - шумная; выше 80 дБ - очень шумная.

Для измерения силы и интенсивности шума применяют различные приборы: шумомеры, анализаторы частот, корреляционные анализаторы и коррелометры, спектрометры и др.

Основными мероприятиями по борьбе с шумом являются рационализация технологических процессов с использованием современного оборудования, звукоизоляция источников шума. Звукопоглощение, улучшенные аритектурно-планировочные решения, средства индивидуальной защиты.

На особо шумных производственных предприятиях используют индивидуальные шумозащитные приспособления: антифоны, противошумные наушники и ушные вкладыши типа «беруши». Эти средства должны быть гигиеничными и удобными в эксплуатации.

В России разработана система оздоровительно-профилактических мероприятий по борьбе с шумом на производствах, среди которых важное место занимают санитарные нормы и правил контролируют органы санитарной службы и общественного контроля.

Наиболее эффективна защита от шума и вибрации в источнике их образования. Поэтому при проектировании и конструировании оборудования и технологических процессов необходимо (где это возможно) заменять ударные взаимодействия деталей безударными, возвратно-поступательное движение – вращательным, подшипники качения – подшипниками скольжения, металлические детали – деталями из пластмасс или других материалов, шумные технологические процессы – бесшумными или малошумными и т.д.
При изготовлении оборудования необходимо соблюдать минимальные допуски в сочленениях и тщательную балансировку движущихся деталей, демпфировать (поглощать) вибрации соударяющихся деталей путем покрытия их материалами, имеющими большое внутреннее трение (резиной), а также применением прокладок из пробки, битумного картона, войлока, асбеста и т.п.
Защита от аэродинамического шума, возникающего при работе вентиляционных установок, кондиционеров, компрессоров, при обдувке деталей сжатым воздухом для их очистки, сушки и при других технологических операциях требует больших усилий и часто является недостаточной. Основное снижение шума достигается в основном звукоизоляцией источника или применением глушителей, которые устанавливают на воздуховодах, всасывающих трактах, магистралях выброса и перепуска воздуха.
Звукоизоляция – это специальные устройства – преграды (в виде стен, перегородок, кожухов, экранов и т.д.), препятствующие распространению шума из одного помещения в другое или в одном и том же помещении. Физическая сущность звукоизоляции состоит в том, что наибольшая часть звуковой энергии отражается от ограждающих конструкций.
Звукоизолирующая способность преград возрастает с увеличением их массы и частоты звука. В ряде случаев многослойные конструкции, состоящие из разных материалов, обладают более высокой звукоизоляцией, чем однослойные конструкции такой же массы. Воздушная прослойка между слоями увеличивает звукоизолирующую способность преграды.
В производственных условиях часто вместе со звукоизоляцией применяют звукопоглощение. Наиболее эффективно поглощают звук пористые материалы. Это объясняется переходом энергии колеблющихся частиц воздуха в теплоту, образующуюся в результате их трения в порах материала. В качестве звукопоглощающего материала применяют капроновое волокно, поролон, минеральную вату, стекловолокно, пористый поливинилхлорид, асбест, пористую штукатурку, вату и др.
Очень часто для защиты от шума используют специальные кожухи, устанавливаемые на агрегатах. Их обычно изготавливают из тонких алюминиевых, стальных или пластмассовых листов. Внутренняя поверхность кожуха обязательно облицовывается звукопоглощающим материалом. При установке кожуха на пол должны использоваться резиновые прокладки. Кожух может обеспечить снижение шума на 15-20 дБ.
Для защиты работающих от непосредственного (прямого) воздействия шума используют экраны, устанавливаемые между источником шума и рабочим местом. Акустический эффект экрана основан на образовании за ним области тени, куда звуковые волны проникают лишь частично. Экраны облицовывают звукопоглощающим материалом толщиной не менее 50-60 мм. Снижение шума в местах, защищенных экранами, составляет 5-8 дБ.
В шумных цехах ряд рабочих мест, например операторов пультов управления, размещают в звукоизолированных кабинах, внутренние поверхности которых облицовывают звукопоглощающими материалами.
В больших производственных помещениях хороший эффект в снижении шума дают объемные звукопоглотители в виде перфорированных кубов, шаров или конусов. Их подвешивают над шумными агрегатами или размещают в определенном порядке вдоль ограждающих конструкций.
Большое значение для снижения шума и вибрации имеет правильная планировка территории и производственных помещений, а также использование естественных и искусственных преград, препятствующих распространению шума.
21.КЛАССИФИКАЦИЯ ПРОИЗВОДСТВЕННОГО ОСВЕЩЕНИЯ

В зависимости от источника света производственное освещение может быть двух видов: естественное, создаваемое непосредственно солнечным диском и диффузным светом небесного излучения, и искусственное, осуществляемое электрическими лампами.
По конструктивным особенностям естественное освещение подразделяется на:
боковое, осуществляемое через окна в наружных стенах;
верхнее, осуществляемое через аэрационные и зенитные фонари, проёмы в покрытиях, а также через световые проёмы в местах перепадов высот смежных пролётов зданий;
комбинированное, когда к верхнему освещению добавляется боковое.
Искусственное освещение предусматривается в помещениях, в которых недостаточно естественного света или для освещения помещения в те часы суток, когда естественный свет отсутствует.
По конструктивному исполнению искусственное освещение может быть двух видов - общее и комбинированное, когда к общему освещению добавляется местное, концентрирующее световой поток непосредственно на рабочих местах.
Общее освещение подразделяется на общее равномерное освещение (при равномерном распределении светового потока без учёта расположения оборудования) и общее локализованное освещение (при распределении светового потока с учётом расположения рабочих мест).
Применение одного местного освещения внутри зданий не допускается.
По функциональному назначению искусственное освещение подразделяется на следующие виды: рабочее, аварийное, специальное.
Рабочее освещение обязательно для всех помещений и на освещаемых территориях для обеспечения нормальной работы, прохода людей и движения транспорта. Аварийное освещение предусматривается для обеспечения минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения.
Наименьшая освещённость рабочих поверхностей, требующих обслуживания при аварийном режиме, должна составлять 5% освещённости, нормируемой для рабочего освещения при системе общего освещения, но не менее 2 лк внутри зданий.
К специальным видам освещения относятся: охранные, дежурные. Для охранного освещения площадок предприятий и дежурного освещения помещений следует по возможности выделять часть светильников рабочего или аварийного освещения.

Количественные показатели

Освещение характеризуется количественными и качественными показателями. К количественным показателям относятся:

-Лучистый поток Ф – мощность э\м излучения в оптическом диапазоне 2-380000 нм, Вт;

- световой поток F - часть лучистого потока, воспринимаемая человеком как свет; характеризует мощность светового излучения, измеряется в люменах (лм);

F=Ф*Кл*qmax

Kл – к-т видности, амплитудно-частотная характеристика зрения

Qmax=683 лм\Вт – максимальное ощущение зрения, кот.может произвести 1 Вт лучистой энергии (дневное зрение);

Qmax=1740 лм\Вт – сумеречное зрение

- сила света J - пространственная плотность светового потока; определяется как отношение светового потока dф, исходящего от источника и равномерно распространяющегося внутри элементарного телесного угла dЩ, к величине этого угла; J== dф/dЩ; измеряется в канделах (кд);

- освещенность Е - поверхностная плотность светового потока; определяется как отношение светового потока dф, равномерно падающего на освещаемую поверхность dS2), к ее площади: Е=dф/dS, измеряется в люксах (лк);

- яркость В поверхности под углом б к нормали -это отношение силы света dJа, излучаемой, освещаемой или светящейся поверхностью в этом направлении, к площади dS проекции этой поверхности, на плоскость, перпендикулярную к этому направлению: L = dф/(dScosа), измеряется в кд \м-2.

Качественные показатели

Для качественной оценки условий зрительной работы используют такие показатели как фон, контраст объекта с фоном, коэффициент пульсации освещенности, показатель освещенности, спектральный состав света.

Фон - это поверхность, на которой происходит различение объекта. Фон характеризуется способностью поверхности отражать падающий на нее световой поток. Эта способность (коэффициент отражения р) определяется как отношение отраженного от поверхности светового потока Фотр к падающему на нее световому потоку Фпад; р == Фот/Фпад. В зависимости от цвета и фактуры поверхности значения коэффициента отражения находятся в пределах 0,02...0,95; при р >0,4 фон считается светлым; при р = 0,2...0,4-средним и при р <0,2-темным.



Поделиться:


Последнее изменение этой страницы: 2016-12-13; просмотров: 335; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.187.103 (0.112 с.)